Using Software Engineering Metrics In
AP Modularization

A thesis
presented to
the faculty of the Department of Computer and Information Sciences

East Tennessee State University

In Partia Fulfillment
of the Requirements for the Degree
Master of Science in Computer Information Science

by
Kwaku Owusu-Tieku

August 2001

Dr. Donald Sanderson, Committee Chair
Dr. Martin Barrett, Committee Member

Dr. Phillip Pfeiffer, Committee Member

Keywords: Database, AP Modularization, STEP/EXPRESS, Software Engineering Metrics

www.manaraa.com

UMI Number: 1405549

il

UMI

UMI Microform 1405549
Copyright 2001 by Bell & Howell Information and Learning Company.
All rights reserved. This microform edition is protected against
unauthorized copying under Title 17, United States Code.

Bell & Howell Information and Learning Company
300 North Zeeb Road
P.O. Box 1346
Ann Arbor, MI 48106-1346

www.manharaa.com

ABSTRACT

Using Software Engineering Metrics In
AP Modularization
by
Kwaku OwusuTieku

Significant amount of work has been done in software engineering in terms of reuse. With the
use of object-orientation and design patterns that sypport the development of reusable modules, it
appears that the devel opment and reuse of software modules in creating new systemsis
becoming more and more common. The software engineering world, however, has taken reuse
more seriously than database; more research and improvement in reuse has been made in
software engineering than in database. This paper investigates how software engineering metrics
can be applied in the devel opment of reusable database modules. This research provides a model
for predicting the reusability of EXPRESS modules. It establishes a relationship between
coupling and reusability of EXPRESS modules and provides a set of metrics that may be used in
the proposed model for measuring coupling in EXPRESS modules.

www.manaraa.com

ACKNOWLEDGEMENTS

| would like to thank my parents for their love and support and for their dedication to higher
education. Without them, this would not have been possible. | would also like to thank Dr.
Donad Sanderson, my thesis advisor, for his supervision and patience, Dr. Barrett and Dr.
Pfeiffer, for advising and critique, Mr. David Price, Project Lead for AP Modularization effort,
for helping me find literature on AP Modularization and sample EXPRESS modules. Y our
contributions are greatly appreciated. | would aso like to thank al the students who participated

in the survey. | could not have done this without them.

www.manaraa.com

CONTENTS

e 1S Y I ¥ AN O SRR 2
ACKNOWLEDGEMENTS ...ttt tee s tee st e s e e sate e s enee e e nnneesneeesnneesnneenas 3
(@0 I N S USROS 4
I B IO 0 1 S 8
DEFINITION OF TERMS ...ttt sttt st st e e esesae e esessenaenensessenes 9
Chapter Page
1. INTRODUCTION ...oouiiiitisieieiesteseeese st see s et seeeesessesaesessestessesessessenessessensesessessenes 11
Statement Of The Problem...........ooei e et 11
1Y Ko (A VZ= (o] o ISP 11
(@ o1 o 1Y/ 12
HYPOTNESES.. ...ttt et b ettt e b e ens 12
Thesis Outling ANd APPrOACKc.eeiuieiiece e 13
2. REVIEW OF RELATED LITERATURE ...t 14
L gLug0o [0 ox i o] o A USSR 14
ReUSE AN REUSADITTY ..o 14
Reusability: A DefiNItION........ccccoiiee e 14
TYPES Of REUSE.eeiiitieie ettt sttt be st s ae et e 15
BY SUDSLANCE........cociieiece e 15
BY SCOPE ...ttt n e neas 15
BY MOUE.....eoeeeet s 15
BY TECHNIQUE ...ttt 15
BY INEENTION......oeiieiiieeeeee e 15
2 Y (0o U Tox S 16
What Is A Reusable Software MOodUIE?............ooveveviereeesee e 17
Designing Components For Reusabilitycccccvevvvevieie s 17
Factors Influencing SOftware@ REUSEcoveiiieieeeeeeee e 18

4

www.manaraa.com

(@0 7= Lo o PR 18
(@001 01 1= 1 Y/ 18
IMOTUIBITTY.....cveseeeei et 18
Reusability MetricS AND MOGEIScc.oeiieeieciecece s 18
The Factor, Criteria, Measurement (FCM) Model...........ccooeveriinnniniececeene 18
Proposed Measurement MOcccoieeiiieeiice e 19
Database Module Reuse - A DefiNitioN.........ccoveeiineinieneeeeee e 19
PropoSet MOTE!coiiiieeee e 20
Factor: Understandability..........ccccoveviiieiieieciececce e 20
Criterial COUPIING ...cveeeierieeieeieei e 20
Survey Of Software ENgineering MELIICS........ccoeeiiiieiicie e 21
10T L8 o 1o ISP 21
Some Software DESIGN MELTICSooviieeiicse e 21
3. STEP/EXPRESS AND AP MODULARIZATION.....cootiiiecte et cie e stee et st svee e 24
S I = TSSO 24
10T 18 o (o] o A USRS 24
The Data Exchange Problem.........c.ooiiiie e 24
WAL IS STEP? ...ttt sttt st e nenre e 25
STEP Architecture And COMPONENTSooviiuirereeieiesee s 25
The Application ProtoCOl (AP)c..ooeeiece ettt 28
Resources FOr AP DeVEIOPMENT ..o 28
The AP Devel OpMENt PrOCESSccvecieiecie ettt 29
o B o YR 29
L gligoTo 18 o (o] o PRSP SRSTOPRPRPRN 29
Features Of EXPRESS.........ccooeeeeie ettt 30
SCREIMA. ...ttt 30
(D= e 1Y -SSR 30
SIMPIE DAA TYPES.eeueeieieriesie sttt e e be s 30
AQQregation Data TYPEScceeiieieeirecie e steeriese s sre e ste e sre e ee e eas 30
CoNStructed Data TYPESveveverieeieeieeesieie sttt 31

5

www.manaraa.com

DeriVed Daa TYPESeeueeeeieriesie sttt nee s 32
RUIES.....ceee ettt nrenne s 33
FUNCtiONS AN ProCEAUIEScovieieeie e 33
INVErse RE@ONSNIPScoiveeiecieceeece e 33
Supertypes, Subtypes, And INheritanCecoceeeveieniineenece e 34
Schema INterfaCingcoovevveeereee e 34
AP MOQUIINZBEION. ..ottt sae et s sb e e e sbe e be st e sreenneeneen 35
1o L1 o o USSR 35
Goals Of AP MOQUIAITZBLIONc.ceeeiiriisiesiesiisieeee e 36
Structure Of The ModUIarized AP ... 36
4. METRICS APPLICATION AND SURVEY ANALYSIS ..o 38
Selected Metrics And MeasuremMent UNITS........coceveeienienenie e s 38
L gLuge o (8 ox o] o PSSRSO 38
The Reuse Model For AP ModUlariZation............cooeeieeieneenesiesee e 38
REUSE "85 18" .. ittt 39
ReUSE BY EXIENSION.....cceiiiiieeieece e e 39
Reuse By SPeCialiZation...........cccoverirerieieresese e 39
Description of Proposed Candidate MELIiCScccveiieiiieeiie e 39
Data Abstraction Coupling (DAC) ..o 39
Data Abstraction Coupling from Entity Types (DAC_ENT)cccccueueee. 40
Data Abstraction Coupling from Enumeration Types (DAC_ENUM)40
Data Abstraction Coupling from Select Types (DAC_SEL)........ccccueueeee. 40
Data Abstraction Coupling from Restrictedc.ccceonireinieneneieneen, 40
(Defined) Types (DAC _DEF)......cci et 40
Number of SUpPertypes (N_SUP)coereiireeee e 40
Number of SUBLYPES (N_SUB)oooecieceee e 41
Depth Of INheritanCe (DIT) .ooeeeceee e 41
Depth Of Data Abstraction Coupling (DAC_DEPTH)cccccovviinenennen. 41
APPIYING THE MEITICS ...ttt e be e sreenneennens 42
Types Of Coupling MEASUIEd...........ccerereririeieeesee st 42
6

www.manaraa.com

Coupling Through Data Abstraction (DAC).........cccceeiveveveeveeeceece e 43

Coupling Through Inheritance (C_INH)ccoooiiiiiiriiecerere e 44

B ANALY SIS ettt sttt R Rt ne Rt e e R R et neeRe et et nenrenens 45

ANAYSIS OF SAMPIE AP ... 45

Attribute Types And Data Abstraction Coupling (DAC)ccceeveveeceveevieeeeceene 46

INNEMTTANCE. ... ittt st et esreenaeenee s 46

ANAYSIS Of SUNVEY Dala........ccceeieiieiieiie et ste e te e sae e sre e seeaesneenseennens 49

B. CONCLUSIONcouiitiiieietisiiiei ettt te st e se et e sessesse e esesbeeeseabesaeseesessessesessensenensensenen 52

2T] A o o I 2 54

APPENDIX A: EXPRESS LISTING FOR EDITED VERSION OF AP 203(1SO-10303-203)...56

APPENDIX B: ANALY SIS OF SCHEMA AP 203 (ENTITY TYPES) ..cccoovvievieeeeeneeie e 76

APPENDIX C: ANALY SIS OF SCHEMA AP 203 (ATTRIBUTE TYPES) ...cccooevvievieieirienas 80

APPENDIX D: ANALY SIS OF SCHEMA AP 203 (SELECT TYPEYS)....cccvovverineeneeieeen 91

APPENDIX E: ANALY SIS OF SCHEMA AP 203 (RESTRICTED TYPES)ccccovvvvvveririenns 92

APPENDIX F: SURVEY ..ottt sttt st st st e st s e nnae s s nnaeeenaeesnenesnnneas 93

APPENDIX G: SURVEY RESULTS-TIME FOR REUSING EXPRESS MODULES............. 108

Y 1P 112
7

www.manaraa.com

LIST OF FIGURES

Figure Page
1. Proposed MeasuremMent MOE!coocieeeieiie et 20
2. Structure Of The STEP StaNdard..........cccooeeiiriinieeeeseeee e 27
3. A SChemMaln EXPRESS.........cooitiiieisenie ettt sttt e s b e 30
O o o[1= 0 = 0] T 1N/ 0= TSR 31
5. CONSITUCIED TYPES....ueitieiiteriesiesiee ettt sttt sttt ettt s b e b bbbt e ae e e e et e nb et e nrenne e 31
T =01 11V L= = 1o o PSSR 32
7. Example Use Of DEfiNEA TYPE ..ottt 32
8. Example Use Of Derived AttHDULE.cceeieee e 33
S o o= =SS 33
10. A SIMPIE EXPRESS FUNCHON.......c.ciiieiieeiesecie ettt ste e e sse e sneesseenaesneessesnnesreessesnnnns 33
11. AN INVErse REIAONSNIP. ..o e 34
12. Inheritance With ONEOF CONSITAINTccoriiiriiinesireeeee e 34
13. Inheritance With ONEOF And ANDOR CONSIFAINES.......cceeuereerienienieerieseesiessie e sressee e 35
14. Structure Of A MOAUINZED AP ..ottt enneeeennee e 36
15. Reuse Model FOr AP MOAUIGIIZEEION.........ccciiiiiieiienie et 39
16. Complete Measurement Model With MELNICS.........cooeiiieriecee s 42
I 7 O I = TSRS 43
G T I O I S 43
ST N O\ SR 43
20 I 2 O =1\ 1 OSSR 43
P2 T O PSR 44
22. Coupling Through INNEITANCE..........coiiiiieee e 44
23. Type Composition For The Sample SChEMAcccveiieeiiee e 45
24. Data Abstraction BY PEICENTAJEcoccvieiii ettt st sne e 46
8

www.manaraa.com

DEFINITION OF TERMS

Attribute. The term attribute is used in software and database modeling to mean characteristic of
an object. Example: a name is an attribute of a person.

Class. A classisamodel of areal world concept or object particular to object-oriented
programming. A class specifies the prototype for a set of objects that share common

characteristics and functionality. [http://www.instantweb.com/~foldoc/]. A class contains

methods, which specify the functionality of the object, and attributes, which specify the state or

characteristics of the object.

Database module. A database module is a data specification that models one or more related
concepts. The term database module can be used to refer to asingle entity or a set of entitiesin a

schema that collectively describe an object or a concept.

Entity. An entity isamodel of area world object or concept particular to atype of database. In
adatabase, a declaration of an ertity introduces a new object into a data model and gives the
characterigtics (attributes) of that concept. The use of an entity in database is analogous to the

use of aclass in object-oriented programming.

Method. A method is an element of a class that specifies one aspect of the class s behavior. In

procedural programming, a method is referred to as a function.

Object-oriented programming (OOP). Object-oriented programming is a school of thought that
emphasizes the use of objects in programming. Solving a problem in OOP involves identifying

what objects collaborate in carrying out the task and the responsibility of each object involved.
Product Data. The term product data here is used to refer to al information created or used by

computer-aided design (CAD), computer-aided engineering (CAE), computer-aided
manufacturing (CAM), and managed in a computer system [10]

www.manaraa.com

Software Module. The term module refers to an independent piece of code that has a specific
functionality. A software module can be as small as a single function. In the broadest sense, it

can also refer to aclass or a set of classes that collaborate to perform common task.

10

www.manharaa.com

CHAPTER 1

INTRODUCTION

Statement Of The Problem

Reuse is the application of existing solutions to new problems. Reuse can reduce the time
spent in creating solutions by avoiding duplicated efforts. In software engineering the concept of
reuse has been explored and has been reported to be very beneficial. Frakes, for example, notes
that “using reusable software generally results in higher overall productivity” [11]. According to
Poulin et a. “the financia benefit attributable to reuse during the development phase is 80
percent of the cost of developing new code”’ [19]. The benefits are not only realized in
productivity but also in quality; software developed using existing components can be more
reliable than those developed from scratch because the reused components are usually well tested
and have been used in severa developments.

However, the reusable components must exist before they can be reused. The absence of
formal reuse practices is, therefore, often not a result of unwillingness to practice reuse; rather
the problem arises from lack of reusable objects. In both software and database, developers have
produced large quantities of logic that cannot be reused due to its lack of structure and over-
specificity. A partial solution to the problem of reuse, therefore, liesin the answer to the
following question: What features make modules reusable, and how can one achieve such

features in database design models? This research is an attempt to answer the above question.

Motivation
The research presented in this paper is motivated by the gains in productivity in software
development due to reuse. While reuse has resulted in increased productivity and reliability in
software [11], the concept and practice of reuse is still unexplored in database module design.
One area in database design where reuse has recently received some attention isin the
development of EXPRESS database modules known as Application Protocols or smply APs.
EXPRESS is the data modeling language used in STEP. Application protocols are EXPRESS
modules that form the unit of information exchange in STEP (See Chapter 3). Current

11

www.manaraa.com

EXPRESS modules are huge, monolithic, and tailored to specific applications. In a process
known as AP Modularization, developers are making efforts to design modules that are smaller,
independent, and hopefully reusable. However, there are no guidelines as to what determines if a
module is a good candidate for reuse or as to how a reusable module should be designed.
Because object-oriented software modules bear a close resemblance to EXPRESS database
modules, it is assumed that if metrics and guidelines similar to those used to develop reusable
object-oriented software, are applied to the design of database modules, the gains in productivity
seen in software may also be realized in database development.

Objectives
AP Modularization aims to achieve reusability through smaller modules designed to
address single or closely related concepts. In software, the reusability of a module is determined
by several factors, including coupling and complexity [24][18]. It isbelieved that in database
severa factors will also determine whether or not a module is reusable. The primary objective in

this research is to determine whether or not coupling has effects on reuse of database modules.

Hypotheses
This research sets to establish whether or not coupling influences database module reuse.

In gtatistics, a single hypothesis is usually expressed as two alternative hypotheses. The first part
of a hypothesisis called the null hypothesis denoted by Hy. The second part of the hypothesisis
the actua hypothesis (H;) that is expected to be proven true. The proposed hypotheses are
expressed below:

Ho: The time required to use an existing EXPRESS module does not increase

significantly as coupling between the modules increases.

Hi: The time required to use an existing EXPRESS module increases significantly

as coupling between the modules increases.

www.manaraa.com

Thesis Outline And Approach

The outline of thisthesisis as follows. Chapter 2 presents a study of reuse and its benefits
in software engineering. Specificaly, the features that promote reusability of software modules
and the metrics for evaluating these features were identified. Selected metrics were chosen to
serve as a basis from which specific metrics were derived for evaluating EXPRESS database
modules. In addition, a description of proposed measurement model to be used in this study is
presented.

Chapter 3 presents a study of the EXPRESS modeling language and AP Modularization
and its goals, which form the basis for this study. In Chapter 4, the candidate metrics to be
applied to a sample AP are identified and described. A detailed description of how the metrics
were applied to the sample schema is aso provided in this chapter. Chapter 5 presents the
analysis of the results from applying the metrics to the sample schema. After applying the
candidate metrics to sample schema, a survey was conducted to collect information about the
difficulty in the use of EXPRESS modules. The survey asked participants to use existing
EXPRESS schema items from the sample schema to which the candidate metrics have been
applied. The intent was to record the amount of time taken to understand the selected modules.
The analysis of this survey is given in this chapter. Chapter 5 presents both the findings from
applying the metrics and the survey conducted and its results. Chapter 6 provides the fina

conclusion.

13

www.manaraa.com

CHAPTER 2
REVIEW OF RELATED LITERATURE

Introduction
The background research in this paper involves two separate areas. software reuse and
metrics and database schema design using EXPRESS. The first part of the research is devoted to
reuse and software engineering metrics. The second part of the research focuses on STEP, an
SO standard of which EXPRESS is a part, including major features provided by EXPRESS for
devel oping database modules.

Reuse And Reusability

Reusability: A Definition
Software reuse is the use of existing software components to construct new systems [20].

Reusing existing parts or components is a standard part of software engineering and human
problem solving in general. However, reuse in software development is more effective if
practiced formally [11]. Formal reuse implies that reuse must be viewed as a god to strive for,
not just a result that happens by chance. Before reuse can take place, the reusable components
must exist in some form, and designers must be aware of their existence and the functionalities
they provide. If formal reuse is part of an organization’s overall development goals, then the
software construction process is different; not only are developers tasked to find and use existing
artifacts, they also have to assure that the final product can aso be reused in future devel opment.
The task of storing and searching for reusable components can be streamlined using a popul ated
repository of components that have been tested and proven reliable. In software engineering,
such repositories exist in the form of user interface toolkits, frameworks, and libraries. In order
to discuss the issues associated with the design of reusable modules, one must first understand

the different kinds of reuse that exist.

14

www.manaraa.com

Types Of Reuse

Software engineering literature lists many different kinds of reuse, but one of the most
comprehensive lists is the one provided by Prieto-Diaz [20].

By Substance. Reuse by substance is categorized further into three sub-categories. Idea
reuse involves reusing some existing idea that has been used to solve some recurring problem.
Artifact reuse is the reusing of old components. Finally, procedural reuse is the reuse of exiting
algorithms.

By Scope. Reuse by scope can either be vertical or horizontal. In vertical reuse, existing
components are used to construct new applications within the same domain. In horizontal reuse,
the components are used outside the domain for which they were originally designed. From
design point of view, it may be easier to construct reusable components for vertical reuse than
for horizontal reuse. Designing modules for horizontal reuse is complicated by needs to
anticipate a larger scope and design the components in the most generic form to alow inter-

domain application development.

By Mode. Reuse by mode entails the approach by which an organization conducts reuse.
An organization may conduct reuse with aformal approach or in an ad-hoc manner. The state of
practice in reuse in many software engineering organizations is characterized by an ad-hoc

approach [20].

By Technique. Reuse can aso be characterized by how the new system is actually built.
A new system may be constructed by putting together existing components (compositional
reuse), or by using high-level specifications and application and code generators to produce a

new system (generative reuse).

By Intention In reuse, whatever artifact is reused, it may be used as-is, or it may be
modified or extended to provide additional functionality. The reuse of components without any

modification is termed blackbox reuse. Whitebox reuse is when the component is modified

15

www.manaraa.com

before use. According to Prieto-Diaz, whitebox reuse is prevalent in the current state of practice
[20].

By Product. Reuse by product looks at what kind of artifact is reused. There are various
products devel oped during the different phases of the software devel opment. Although most of
these products are developed without reuse in mind, they often become useful in new projects.
These products include system architecture, high-level specification, design, objects, source
code, and text.

Both software and database designers must be aware of the different facets of reuse. They
should also keep the following in mind when designing reusable modules:

Reusable components should be designed with the intent for reuse [1,2,9,27]. The magjor
reason why the state of practice in software reusability is characterized by ad-hoc and
whitebox reuse is that most software components are not designed for reuse. Existing
software is not well documented; it is usually designed with restrictions that are specific to

the current application. These factors limit the reuse of modules in other applications.

Reusable components should be tested or certified [20]. The testing of modules assures
quality and reliability. However, the size of the library and the complexity of the software

complicate the task of testing alarge library of modules.

Reusable components should be classified and collected into accessible libraries [7,11].
Reuse cannot take place if the components are not accessible. In software organizations,
reuse can be avery difficult task if components are not grouped together into some organized

form.

Reusable components should be accompanied by documented interfaces [11]. Developers
often spend large amounts of time trying to find out what functionality is provided by
frameworks and how to use them. The task of selecting and using components can be further

complicated by the lack of documentation describing what components do.

16

www.manaraa.com

What I1s A Reusable Software Module?
Although software reuse is still practiced in an ad- hoc manner, improvements continue to

be made in this field especially in the area of graphical user interface design. Frameworks such
as the Microsoft Foundation Classes (MFC) and the Java Foundation Classes (JFC) simplify
some complex tasks by providing generic solutions that can easily be applied to similar problems
in the creation of graphical user interface applications. A reusable software module can be
thought of as a unit of code or data specification that provides a specific functionality or
semantic. The ideal features of such a module include functional independence, extensibility, and
reliability. Functional independence is concerned with modules that perform single tasks.
Extensibility is the ability to modify a module so that it performs new or additional tasks.
Reliability is concerned with modules that produce the same results accurately and consistently.
If creating software from reusable components is difficult, designing the reusable modulesis
even more difficult. For both designers and users of reusable modules, some of the questions that
need to be asked include the following: What are the indicators of reusable modules? What
criteria can be used to evaluate modules for reusability?

Designing Components For Reusability

The creation of reusable modules and the identification of such modules by developersis
part of what makes reuse a difficult task. A design activity is a recursive decomposition of larger
components or modules into desired level of granularity and functionality [17]. The art of
decomposing larger components to achieve reusability requires an identification of modules that
could be potential sources of features that may hinder reuse. The task of identifying error-prone
modules requires that the factors that prohibit reuse be known so that both qualitative and
guantitative guidelines or metrics can be developed for evaluating the modules. When such
guidelines and metrics are devised, they may be used to pinpoint areas that need rework in the
design, but first the indicators of reusability must be identified.

In order to devise a measurement model or qualitative guidelines for evaluating reusable
components, the factors that are known to influence reuse must be identified. In software
engineering, certain factors are known to influence reuse. These factors include coupling,

cohesion, complexity, and modularity.

17

www.manaraa.com

Factors | nfluencing Software Reuse

Coupling. Coupling is a measure of interconnection among modules[18]. In software
design, the goal is to achieve low coupling among components. Low coupling will result in a
system with independent components that are easy to understand, easy to maintain, easy to test,
and possibly more reusable than highly coupled modules.

Cohesion Cohesion is concerned with individual components having singleness of
purpose [18]. In software, high cohesion is sought because high cohesion promotes modularity,

which makes testing and maintenance less difficult [2].

Complexity. Complexity can be viewed in different ways. Algorithmic complexity is a
measure of an individual algorithm’sintricacy. Structural complexity is a measure of the

system’s interrel atedness: for example nesting, interdependence of objects, or inheritance. [9].

Modularity. Modularity in software is the division of large components into smaller
manageable units each addressing a smaller part of the problem to be solved. Modularity reduces
the complexity of alarge program by breaking the problem into manageable units [18].

Metrics have been developed in software engineering to quantitatively measure these
factors and such metrics have been used to assess software modules for reusability. In this

research, the focus is whether or not coupling affects database module reuse.

Reusability Metrics And Models
The Factor, Criteria, Measurement (FCM) Model

In software engineering, several measures have been used to evaluate software quality. At

minimum, for a component to be considered for reuse, it must be of good quality. Measuring
quality quantitatively is not asimple task. As stated by Fenton et a., “quality is multi-
dimensiondl; it does not reflect a single aspect of a particular product ” [9]. Many software
metrics text and papers [9,12] give models for measuring software quality. One of these models,
proposed by Fenton and colleagues [8], define factor, criteria, and metric (FCM) for each

measurement. FCM is atree-like structure where the top levd lists the factors—items that are

18

www.manaraa.com

known to be the major indicators in the evaluation of the attribute in question. For instance, in
evaluating quality, one may look at usability, testability, and portability as factors giving
indication of the quality of a product. The second level in FCM consists of alist of criteriafor
each factor. These lower level items are easy to understand and measure. The last level
comprises of the actual metrics that define the specific measurements for each criterion. For
instance the criteria comment ratio may be defined as a criteria for evaluating understandability.
For this criterion, specific metrics can include counting the number of comments lines per source

line and counting the number of comments lines per components.

Proposed M easurement Model
Database Module Reuse — A Definition
In this research, a measurement model based on McCall’s FCM model will be used for
evauating and predicting the reusability of EXPRESS database modules. The proposed
measurement model is shown in Figure 1. In the proposed model, reusability is the final goal.

The major factor chosen as the indicator of reusability with respect to database modulesis
understandability. Understandability is a qualitative attribute and, hence, is difficult to measure
directly. Coupling is used as an indirect measure of understandability. The major assumption
here is that in order to reuse a module, one needs to see the definition of that module in an
attempt to understand it. Understanding the module can be complicated if that module is coupled
with many other modules. Therefore, the degree of coupling in a module can be an indication of
the effort required to understand the module, which can affect reuse. Specific metrics are hence
chosento measure the features in EXPRESS database modules that introduce coupling. The
following sections will provide a definition of reusability with respect to database modules as
used in this research.

One of the goals of this research is to be able to recommend metrics that can be used to
evauate and predict the reusability of EXPRESS database modules. The definition of reusability,
as used in the proposed measurement model, is based on the reuse model of AP Modularization
described in Chapter 4. A database module is said to be reusable if it can be

a) used as part of another application or as part of alarger module without any modification to

it, or

19

www.manaraa.com

b) modified to add extra functionality (extension) before using it in another application or as
part of alarger module, or
c) modified to restrict its domain or scope (specialization) before using it as part of another

application or as part of alarger module.

Reusability IUnderstandability Coupling

Goal Factor Criteria

Fig 1: Proposed Measurement Model

Proposed Model
Factor: Understandability. In this research, understandability is defined as the ability to

comprehend a module (in terms of time taken to understand it) given the minimum or no interna
documentation. The level of difficulty or the amount of time required to understand a module is
important because developers using a module need to understand both syntactic and semantic
aspects of a module to be able to make changes to the module. The level of understandability of
amodule is related to the coupling within the module. The more coupled a module with other

modules, the harder it is to comprehend it.

Criteria: Coupling. Coupling is chosen as a criteria in determining the reusability in the

proposed model not only because it is often quoted as one of the determining factors in software
quality [18] but also because a number of coupling measures are mentioned in object-oriented
metrics[2][5][17].

20

www.manaraa.com

Survey Of Software Engineering Metrics

Introduction

Recent research in software design metrics has emphasized complexity, especialy,
design complexity, and reusability. Some of the classical complexity measures described by
Fenton et a. [9], including Cyclomatic Complexity, have been used in evaluating quality in
procedural software. Another trend has been to focus on object-oriented metricsto capture
features of object oriented software. Factors addressed include complexity, reusability [6,22],
and maintainability [3]. Emphasis has shifted from code (algorithmic) complexities to design
complexities capturing features such as complexity of inheritance hierarchies [17,24], coupling

and cohesion [2,17], and interface complexity [5,15].

Some Software Design Metrics

This section lists some software engineering metrics that have been used to measure
software quality. The purpose of thislist isto provide candidate metrics that can be used or

adapted for use in the proposed measurement model.

1. Source Lines Of Code (SLOC) [5]. SLOC isthe simplest of the traditional code-level metrics
that use program size to determine program effort and complexity. Various forms of this metric

exist depending on what is deemed to be important. Because software today can be generated by
reuse of existing products and also by automatic code generators, this metric has become less

important.

2. McCabe' s Cylcomatic Complexity (CyC) [5]. First proposed by McCabe in 1976, this metric
uses directed graphs to capture the algorithmic complexity of a module. M cCabe proposed that
the higher the value for this metric, the more complex a module. The unit of measurement is a

module or function.

3. Class Method Complexity (CMC) [5,15]. Originally proposed by Chidamber and Kermerer
(C&K) asWMC (Weighted Method Per Class), Li redefined two metrics, the CMC (Class
Method Complexity) and NLM (Number of Local Methods), to capture what the WMC was

designed to measure. CMC is a sum of the weighted values for method complexity. The

21

www.manaraa.com

weighted complexity can be calculated using for, instance, McCabe's Cylcomatic complexity.
The rationa for this metric is that the more methods in a class and the higher the values for their
weighting factors, the more complex the class, which makes it more difficult to use. The unit of

measurement is class method.

4. Number of Local Methods [15]. NLM is aso one of the object-oriented metrics proposed by
Li. NLM measures the total number of local methods per class. The unit of measurement is class
method.

5. Average Method Complexity (AMC) [5]. This metric is a modified version of Chidamber and
Kermerer’'s WMC. It considers the average method complexity as a good indicator of overall

complexity rather than the sum.

6. Number Of Variables (NAV) [22]. Mentioned by Reyes and Carver, this metric measures the
total number of variable in a class. The unit of measurement is class variable.

7. Depth Of Inheritance (DIT)[5]. This metric is one of the metrics from C&K suite. It measures
how deep aclassisin an inheritance hierarchy. The unit of measurement is class. The viewpoint
is based on the fact that the deeper a classis in an inheritance hierarchy, the more complex it

becomes, because many classes higher in the hierarchy can affect it.

8. Number Of Ancestors (NAA) [5,15]. Li triesto capture the effect of inheritance hierarchies on
classes by defining the NAA metric. His metric is more specific than the C&K’s DIT because it
captures exactly which classes can affect another class by inheritance. It is a count of all classes
that a class inherits from.

9. Number Of Descendants (NOD) [15]. This metric is also proposed by Li. The metric measures

the number of classes that inherit from a specific class.

www.manaraa.com

10. Response For Class (RFC) [5]. Also one of the metrics from the C& K metrics suite, this
metric measures the potential communication between classes. It is a count of all methodsin a
class including other methods called by these methods.

11. Data Abstraction Coupling (DAC) [15]. Data Abstraction Coupling is referred to as coupling
through abstract data type and is defined as total number of classes that are used as abstract data
types in the declarationof a data attribute.

12. Specidization Index (S1) [12]. According to Gillibrand et al., this metric gives an indication
of how well a subclass fits a hierarchy in which it is placed. For instance, if a subclass makes less
use of inherited methods and attributes and instead adds several new ones or overrides inherited
methods, then it may suggest that either the parent class does not correctly model the real

concept or the subclass does not belong in that hierarchy. The Sl is defined as follows:

number of overridden methods * class hierarchy nesting level

Total number of methods

13. Inheritance Level Technique (ILT) [24]. Mentioned by Shih et a., this metric attempts to
capture the complexity of inheritance hierarchies. ILT models an inheritance hierarchy using a
directed graph where every node represents a class and edges represent parent-child
relationships. The metric is based on a single unit called unit repeated inheritance (URI). The
URI is defined as a directed acyclic graph that has the same number of edges as node [24]. The
complexity of an inheritance hierarchy can be indicated by value of ILT metric, which is the
summation of URIs at al levels of the hierarchy.

23

www.manaraa.com

CHAPTER 3
STEP/EXPRESS AND AP MODULARIZATION

STEP

Introduction

This section introduces STEP, EXPRESS, the STEP Application Protocol, and their
relevance to this study. Briefly, STEP is an international standard for information interchange
[25]. EXPRESS is a data modeling language provided as part of the STEP standard for
describing the information to be exchanged [10]. The Application Protocol (AP) is a single unit
of information (EXPRESS information model) that is exchanged using STEP [10]. The major
motivation behind this study arises from the need for the design of modular APs. Further details
about STEP, EXPRESS, and APs are provided in the following sections. Before the STEP

standard is discussed, a brief discussion of the problem of data exchange is presented.

The Data Exchange Problem

In the manufacturing and engineering industries, there has always been a need to share

product data. The term product datais used to refer to al information about a company’s
products and processes that are created and managed in a computer system [28]. The product
data describes al information about a product through its life-cycle. Often a company is spread
across different geographical sites, and data need to be exchanged between those sites or
sometimes between a supplier of a product and a user of that product. In the past, lack of data
formats for exchange has resulted in an inability to share data, or in loss of information during
exchange. Information was lost because different parties often implemented different exchange
standards. Even in cases where the same standard was implemented, different subsets of the
standard were implemented in different software applications. Hence tranglation from one
software application to another resulted in only a part of the information being trandated. Some
earlier exchange gandards include IGES, DXF, and SET [28]. All these standards attempted to
provide a solution to the data exchange problem by providing a single standard within some

industries. Each standard, however, focused on a limited scope and failed to provide a

24

www.manaraa.com

comprehensive solution to the data exchange problem [21]. For instance, IGES (Initial Graphics
Exchange Standard), developed in the 80s [21], focused only on CAD products. SET (Standard
d’ Exchange et de Transfer) was the French response to the data exchange problem, and again its

scope was limited to CAD data.

What |s STEP?
STEP is an acronym for Standard for the Exchange of Product data. STEP is an 1SO
standard with designated name 1SO 10303: “industrial automation systems — product data

representation and exchange" [10]. The major objective of STEP isto provide a solution to the
data exchange problem faced by CAD/CAM and the manufacturing industries by specifying a
neutral format for exchanging data. STEP provides a standard way for describing product data,
with mechanisms for implementations and testing for conformance. The standard is comprised of
series of parts that are published separately. Each part is numbered and is designed to address a
separate aspect of the standard. The initial parts of STEP were accepted and published as an
international standard in 1994, but the standard continues to evolve.

Key objectives for STEP as given by Fowler [10] include the following:
Provide asingle international standard that covers all aspects of CAD/CAM data exchange.
Provide a standard way of describing product data throughout its lifecycle, independent of
any computer system.
Separate the description of data from its implementation to make the standard suitable for
neutral exchange. Separating the description of data from its implementation also will allow

the standard to act as a "basis for shared databases and for long-term archiving." [10].

STEP Architecture And Components

The STEP standard is organized as a multi-part standard that supports the decoupling of
data description from implementation and testing. The complete structure of STEP is shown in
Figure 2. The core architecture of STEP mirrors the three layers in the ANSI/SPARC model
upon which STEP was modeled [10].

The ANSI/SPARC three-layer architecture emphasizes the identification and separation
of three key items in database design. The highest level of the architecture is the application

25

www.manaraa.com

layer, which consists of users views of the systems. The next layer is the conceptua or logical
layer. This layer provides an application-independent data models that can be implemented by
different users at the application level. The lowest level of the architecture is the physical layer.
This layer consists of data structures, which implement the conceptual layer.

The core architecture of STEP can be compared to the ANSI/SPARC three-level
architecture. The Application Protocols represent the specific application views in STEP. The
APs correspond to the application level in ANSI/SPARC three-layer architecture. The Integrated
Generic Resources, which include the new modularized Application Modules (AMs), Integrated
Application Resources (IAR), Integrated Generic Resources (IGR), and Application Interpreted
Congtructs (AIC), correspond to the logical layer in the ANSI/SPARC three-level architecture.
Finaly, the implementation methods, which provide standard mechanisms for encoding data for
exchange and methods for accessing such data, correspond to the physical layer in the
ANSI/SPARC three-level architecture.

The contents of STEP can also be divided into two major categories:. infrastructure and
information models [14]. STEP s infrastructure consists of Description Methods (Parts 11-19,
including the EXPRESS language), |mplementation Methods (Parts 20-29), and Conformance
Testing methods (Parts 30-39). The Implementation Methods describe ways for physically
encoding data for exchange and for providing access to such data in software applications. The
Conformance Testing Methods describe procedures for testing STEP implementations for
conformance to the standard.

26

www.manaraa.com

IS0 TC1B4 5C4 STEP on a Page 150 10303

APFLICATION mmmsmnmaﬂznanmﬂ TEST SUTTES

i % F_xphl:ll hirg [ATS 300 = G 221 Furctomal date & their ::h:m r:pﬁ:!r 3 plant [W]
i sariaiove * EE Lem uf far compa
1 Uouﬂgmmu.-u:rum Edmgn{ck[,al-l’)[ﬂ] wan E:l:ﬁul"de:eﬂ & pﬂd‘mt mibib:rca _E:\'?E[
C 104 VEchanical design asing 1 224 Wech parts pr 'nsu‘gmu:h. n'g ftﬂ%rﬂ W]
£ 205 Wechanical deeizn wmisg amﬁna T 1 225 Building slerm
206 Meckanical des um.g wmlfm'nt W24 Skap mmhnrmn]s}mm
I 207 Sheet metal die E 237 Flant :gulml:uufg]_ﬁr s A:l[‘lﬁlj
206 Lifscycle A 28 Builds ﬂmma B
E A8 Co !&mzhi:h‘uﬂmﬁlurﬂl&nhbﬂlﬁ:t&n X XX Deg prodnc b irdo for forged]
£ 200 Elvclnc sy, inteonenthon & po haging: doagn 0 B g AR A o
L1 Electoxic P a: Te:nd.ug,& C 23] Process-engizeerizg dain [W]
E 241 Elsctooteo hnica| C 233 Techraoad dain par Tgr: came indd & exch W]
£ 213 Hum n:untu:-l[blt:j pﬂmm]Jhna Eorm d pazts W 233 Syetema o hg g mﬁmmmm
E 214 Cope date for u.ulmmm mech design pﬂuststs W aas iﬁruﬁnmm lags, mea 5[4
WIS Shin W335 Maderisle info for :mivsnfu ﬁ?}d A
W16 Fhiz ot Eurw.s W 234 Pumsiture grodect and m
WA Shp A Eiulzrrs EngHEenng |
S | |W 212 Ship etruelres 0 npunal-dnmumhvga Fireaal (0]
g [|D 219 Dimension gepec ﬂ]} ﬁg madel for pod Lo spt
:a'\- U 54 Proc. plg, i, assyral layend slectncal products [3] a [uhg n"!: far oiliges produsien fedity
@ INTEGRATEI-INFORMATION RESOURCES L
. . " THlezend
]
o APPLICATION MODULES (Technical specifi ations) o p--'*‘d:pf]fmbl]m
E B 1001 Appsanace assiprnead [1006 Fauzdafion wpeserntion | A=bP Bl cire = HE apl
3 - e e B e
e 1] ¥ s e gL = i
5‘ T 1004 Efemen] shape (z] iDﬂPShEB ,TE mndd s L0 Eublnled
. O 1005 Efmenial bopologacal shape
ol B e
2 = 1 101 Draughting (e =1} 105 Kitumatins (cj-m DRGEE o
M . H 103 Shep struchines W 106 Buldere come T LD Y
él| T8 i G ERe cnsreEliily 107 Engimes wsﬂm ARM Ra P4 B
g .atp'g E 104 Fate t'l:urrfml;:'ﬂ {8 +:] ?mhmcmwfqrexp]g\tm P.mtrrd.ls E E E-a&
[iV A -
g oaktg INTEGEATED GENERIC RESOURCES gg Eg E %
i o - 0 = o
ul Z-'.%_,!; B | |74 Fond o et Sascr & ot (2B 1=D, | T 4 Vil possmion (113 2R2T
o8 E‘-\E 1 43 Ceom & foprep (al ='W el= :]&2-% [&7 Tolemmoes Lg H¥]
= B I 43 Repras el b (g2=E e 1=0,c3=F) | ¥ 48 Forn featies EE
- _Egl:ﬂ g 1 ahudumm:mr;(ez-a,ci-n [&9 Pcess strochare & peoperties ??E
= "= % 1 45 Matenak {cb=1} C 50 Mathe rratical comstroc = El _g
CEEED el
Rzl fa— S
g F“E HE APPLICATION-INTERPRETED CONSTRUCTS %% E%
= E’E F 501 Edge besed wae frame F 311 Toprlogical bausded susfacs R
sHELEE F 302 Sheilbased wie fmme [312 Fags B—m]feuunmu £
P 'EE;: bl F 503 Ceom-bousded 20 wirefane F 513 El= mrant
3 g F 304 ing anketatiar: I 514 Bivases E
E : Eﬂjﬁ Fi5D bare: & admin [315 Cometructive. s
) E ol 1504 m ulstnents X 514 Michanical- desgn canlex = =
5% SE E 507 Greorn-bonlbded sifics F 317 e ch-design gz o prassutation <!
E E 318 Hon-mamfald surface C3lE N[nc}.-rkﬂ shaced presentahon 5]
ol ~moe E 300 Marilbld surface F 310 Geamalre: Talsrenirss 3
'-:; 1 510 Geom-bourded wie fraese [520 heeoc dmughiing elements E
o H g
=1
. =
=
2l Ckarmxmmh ech st e I=[e2=C) | X2 FDRTH.AN m:h [t H22)
E’. 12 hmﬁzmhr& W 26 DL language mﬁ lﬁ
lwgmpﬁn binding (i K Caz f&‘i‘&
BﬂC]mgm,g rncing (o #50) EW]EKMLI! :CF‘F.E -d.m"md.nh
A8 Lt livabindizg (i
[E.F lMﬁ b %P - E:Cnmmﬂz: Ehﬁéﬂﬂcmdwmbﬂish:?s]
g e o | S et phe ey,
=L = xh a
H=W=Pre paraliing 3 bage [W]g 23=H=Prop=t withdrom F R Pﬂl

Fig. 2: Structure Of The STEP Standard. From http://www.nist.gov.stepdocs/htm

The information models consist of Application Products (APs) and Integrated Resources
for building APs. More detail about AP development is provided in the following sections. The

information models constitute a "set of entities chosen for a specific product, process or

27

www.manharaa.com

industry" [13]. The AP isbuilt from using two sets of resources. Application Resource Model

(ARM), and Generic Resources.

The Application Protocol (AP)
The bulk of the STEP standard is made up of Application Protocols (APs). An AP isthe

final product in STEP development; it is a specialized set of entities with specific business rules

that constrain and define the collection of information that forms the basic unit of exchangein
STEP. Technically, the AP is made up of the Application Activity Model (AAM), the
Application Reference Model (ARM), and the Application Interpreted Model (AIM). The
Application Activity Mode describes the activities of the product’s lifecycle [14]. It includes a
high-level description of input, output, and processes for in a particular domain. The Application
Reference Model describes product information needed in the Activity Model; it resembles a
Software Requirements Specification (SRS) in content. The Application Interpreted Model isan
EXPRESS schema that defines a formal information model, which captures everything specified
in the ARM; it specifies all the information that is to be exchanged. A Mapping Table is used to
trangdate contents of the ARM into generic constructs defined in the Integrated Resources to
produce the AIM. The AP aso includes Conformance Classes, which specify the minimum
subset of the AIM that must be implemented in order to conform to the STEP standard.

Resources For AP Devel opment
Another part of the STEP standard is called the Integrated Resources (IR). The IR sub-

layer ensures consistency in APs across different applications by providing standard data

specifications for developing new APs. IR modules can be regarded as building blocks of STEP.
Currently there are three types of resourcesin STEP. The first set of resourcesis caled the
Generic Resources (GRs). The Generic Resources provide the most generic data specifications in
STEP information models and can be used across all parts of STEP AP development. Another
section of the Integrated Resources is the Application Resources (ARS). Parts in this section are
numbered in the 100s and contain entities that are more application-specific than those in the
Generic Resources. The last set of the Integrated Resources modules is the Application
Interpreted Constructs (AIC). These consist of data specifications that have identical semantics

in two or more applications. For instance, a data specification for a date usually retains the same

28

www.manaraa.com

meaning even in different applications and may in fact be used in different applications. The
AICs are numbered in the 500s.

The AP Development Process
The development of an Application Protocol (AP) in STEP isinitiated by industry needs

or by new technologies and techniques [10]. This implies that, in STEP, APs are not devel oped
without a prior need. This requirement assures that every AP or data in an industry application
that conforms to the STEP standard can be traced to the reason of its existence [10]. The purpose
of an AP isto provide a standard description of anindustry application including the scope and
purpose of such application, the activities involved, input and output data, and methods for
exchanging such information. To ensure consistency, the APs are devel oped by selecting and
reusing standard data specifications or constructs from the Integrated Resources. The term data
specification refers to descriptions that provide facts about an object [10].

The first task in developing an AP is to gather the industry needs, usually from domain
experts. The next step is to develop the APs Application Activity Model (AAM) and the
Application Reference Model (ARM). Next, a Mapping Table is provided to relate the contents
of the ARM (mostly business terms and descriptions) to standard data specifications provided in
the Integrated Resources. This Mapping table is the basis for the Application Interpreted Model
(AIM). The AIM isthe fina product in AP development, although it is not the AP itself. The
Scope of Application Protocol, Constraints, and Conformance Classes (CC) are added to the
AIM as afinal step in the AP development. The Conformance Classes define the minimal subset
of the AIM that must be implemented for conformance to the STEP standard.

EXPRESS

Introduction

EXPRESS (1SO 10303-11) is the designated modeling language for STEP. EXPRESS
constitutes a major part of the Description Methods, which are a fundamental part of the STEP
standard. The role of EXPRESS in STEP is to define the syntax of the information models that
describe data to be exchanged. EXPRESS is an object oriented modeling language. It contains

29

www.manaraa.com

features that are very similar to those found in object-oriented languages like C++. The domain
analysis and the extraction of entities in EXPRESS modeling resembl e the activities done when
modeling software using an object-oriented methodology. EXPRESS, however, also supports
constructs for information modeling, including features for creating data models and specifying
rules and constraints independent of implementation. The following is a brief summary of major
features in EXPRESS language.

Features Of EXPRESS
Schema. A schemais the basic building block of EXPRESS models. A schemaisa

container for all declarations and definitions that appear in a model.

SCHEMA t est;
Data Types. Data types specify the domain TYPE .. END_TYPE

for which instances can assume values. EXPRESS
. . ENTI TY ...END_ENTITY,
provides numerous data types, which can be used
ENTI TY ...END_ENTITY,

in various ways. Attributes and parameters defined | 5 soEm

in a schema must have underlying data types that

. . . Fig. 3: A Schema In EXPRESS
define their domains.

Simple Data Types EXPRESS provides simple data types as the basis for defining user-

defined types. They provide the domain for the atomic data that cannot be further subdivided.
The simple data types include NUMBER, REAL, INTEGER, STRING, BOOLEAN, LOGICAL,
and BINARY.

Aqgregation Data Types. Aggregation data types, sometimes called collection data types,

define a domain that consists of a collection of values of one simple data type. The size of these
collections can be fixed or varying depending on optional constraint present in the type's
declaration. The aggregation data types include ARRAY, LIST, BAG, and SET. An ARRAY is

an indexed, unordered collection of elements. Whether the array can contain duplicates or not

www.manaraa.com

can be specified at declaration using the UNIQUE keyword. A LIST isatotally ordered

collection of elements. Lists may contain duplicates, unless explicitly prevented by the use of the

UNIQUE keyword in the declaration. A
BAG is acollection of unordered elementsin
which duplicates are allowed. A SET is unordered
collection of elements in which duplicate instances
are prohibited.

Constructed Data Types EXPRESS
provides two types of constructed data types. They
are ENUMERATION and SELECT. These types
are part of what EXPRESS calls DEFINED data
types and they are declared by the keyword TY PE.
a) ENUMERATION Type. The ENUMERATION
data type defines an ordered list of names.

b) SELECT Type. SELECT defines a datatype

whose domain is a union of the domains of the

SCHEMA school Info;

ENTI TY student;

1D
END_ENTI TY;

ENTI TY book;
title
END_ENTI TY;

ENTI TY book_shel f;

books
END_ENTI TY;

ENTI TY bag_pack;

books
END_ENTI TY,

ENTI TY organi zati on;

Menbers
END_ENTI TY,

ENTI TY cl ass;
t he_students:

END_ENTI TY,

END_SCHEMA;

. STRING;

. STRING

: ARRAY[0: ?] CF book;

: BAH 0: ?] CF book;

LIST[1: ?] OF student;

SET [1:?] CF students;

Fig. 4: Aggregation Types

types specified in the select list. It is used to define a set of values from which an instance of an

attribute can assume one and only one of those values. The data type defined by SELECT is

usualy a generdization of the types specified in the select list. Specified in the select list must be

constructed types that are visible within the scope
of the schema. Figure 5 shows a declaration of
ENUMERATION and SELECT datatypes.

Named Data Types In EXPRESS, data

types are used in various ways. Some are used as

underlying data types for attributes. Others are
used for declaring formal parameters and return
types for functions. The only types that can be

declared in a formal specification (in a schema) are

31

SCHEMA t est;
TYPE enpl oyee = ENUMERATI ON CF
(tenmporary, permanent);
END_TYPE;
TYPE contractor = ENUMERATI ON OF
(governnent, private);
END_TYPE;

TYPE agent = SELECT
(enpl oyee,

END_TYPE;

END_SCHEMA,

contractor);

Fig. 5: Constructed Types

www.manaraa.com

NAMED data types. EXPRESS provides two kinds of named data types. the ENTITY data type
and the DEFINED data type

a) Entity Types. An entity in EXPRESS describes a single concept like a class does in object-

oriented programming. A declaration of an entity contains a list of attributes that describe that

entity. An entity declaration may also include rules

. - SCHEMA st udent Type;
and function calls to constrain instances of
ENTI TY student;

attributes of that entity. Figure 6 shows an entity ID : STRING
Nanme : STRI NG;
i i SSN : STRING
declaration in EXPRESS. END, ENT! T
END_SCHEMA;

b) Defined Types. A defined data type is declared
by the use of the TY PE keyword. A defined data
type alows a designer to define a new type from an existing type by adding constraints and
assigning a new type identifier. ENUMERATION and SELECT types are aso part of the
DEFINED types. Figure 7 shows the use of a

Fig. 6: Entity Declaration

defined type that restricts the domain of simple SCHEMA col or Type:
TYPE | | = | NTEGER
type based on an INTEGER. V\HE(I;CI)E ?rsEKE :8) AND (SELF <=255)
END_TYPE;
. . ENTITY col or;
Derived Attributes Databases, asarule, R col or _val ue;
G col or _val ue;
i B: | | ue;
contain some values that can be computed from END_E% Hvave
other values, and do not need to be stored END_SCHEMA;

physically in the database. For instance, a person’s
Fig. 7: Example Use Of Defined Type
age can be computed from the date of birth.
EXPRESS provides a construct for defining a derived attribute. The designer must specify the
data type for the derived attribute as well as the expression or afunction call that computes the

value. Figure 8 shows how a derived attribute may be defined in EXPRESS.

32

www.manaraa.com

Rules. In EXPRESS, rules constrain values that attributes may assume. EXPRESS

provides two mechanisms for specifying rules:
local rules and global rules. Also known as
domain rules, local rules are defined inside an
entity or defined type to constrain the domain of
the attributes in that entity or type. An example of
alocal rule is given in Figure 9. Global rules are
defined at aglobal level in the schema (outside all

SCHEMA sal eType;

ENTITY the_sal €;

sal e: REAL;
tax: REAL;
DER VE
tax_amt: REAL:= sale * tax;
END_ENTI TY;
END_SCHEMA;
Fig. 8: Example Use Of Derived Attribute

entities) and are used to constrain a set of entities in the schema.

Functions And Procedures. In EXPRESS,

functions express agorithms that can manipulate
their parameters and return values. Procedures are
used merely to enforce some constraint; no value is
returned. An example of afunction definition in
EXPRESS is shown in Figure 10.

Inverse Relationships. In EXPRESS,

rel ationships between two entities can be
represented by using the type of one entity asan
attribute of another entity. Suppose, for example,
that a student is a member of an organization.

The two entities student and organization
aredefined asin Figure 11. Usually only one part
of the relationship is made explicit while the other
part isimplicit. For instance, Figure 11 explicitly
shows the link from the student to the organization
by the attribute member_of in entity student. The

implicit relationship between the organization and

nmonth :
day
year
WHERE
mm :
dd :

END_SCHEMA;

SCHEMA dat eType;
ENTI TY Dat e;

: | NTECER,;
. | NTEGER;

yy :
END_ENTI TY; - -

| NTEGER;

nont h
day
year

<=12 AND nonth >0;
<=31 AND day >0;
>2000;

end Date

Fig. 9. Local Rules

SCHENA func
FUNCTI ON
LOCAL:

sum
avg :

END_LOCAL;

sum : =
avg : =

RETURN

END_FUNCTI ON

END_SCHEMA,

tionDef;

average (varl, var2: NUMBER)

: NUMBER
;. NUMBER;
NUVBER
varl + var2;

sun 2;

(avg);

Fig. 10: A Simple EXPRESS Function

www.manaraa.com

the students can also be made explicit by declaring an attribute in entity organization and using

the INVERSE construct to indicate the reverse
relationship.

Supertypes, Subtypes, And Inheritance.

EXPRESS allows an inheritance hierarchy to be
defined by the use of the SUPERTY PE and
SUBTY PE keywords. The SUPERTY PE construct
is used to define a supertype entity in an
inheritance hierarchy. In a SUPERTY PE clause,

one specifies all the entities that are subtypes of the

SCHEMA st udent O g;

ENTI TY student;

ID . STRING
menber _of : organization;
END_ENTI TY;
ENTI TY organi zati on;
nane : STRI NG;
I NVERSE
menbers : SET[1: ?] O student FOR
menber _of ;
END_ENTI TY;
END_SCHENMA,

Fig. 11: An Inverse Relationship

supertype being declared. The SUBTY PE construct defines a subtype entity, i.e. an entity that

inherits from specified set of supertype entities.
The SUBTY PE clause must name all the entities
that are supertypes to the defined subtype entity.
Figure 12 shows the use of the SUPERTY PE and
SUBTY PE constructs. EXPRESS also provides
ways to restrict valid instances of entitiesin an
inheritance hierarchy. For instance, to specify that
a student entity can be undergraduate or a graduate
but not both, the ONEOF construct can be used
with the SUPERTY PE keyword (Figure 12).
Similarly, the ANDOR constraint can be used to
show that a student (graduate or undergraduate)

can aso be fulltime or part-time (Figure 13).

SCHENA st udent Schemal;

ENTI TY student SUPERTYPE CF
(ONECF (under grad_st udent,
graduat e_student));

ID : STR NG,
END_ENTI TY;

ENTI TY under grad_student SUBTYPE CF
(student);
END_ENTI TY;

ENTI TY graduat e_student SUBTYPE OF
(student);

isGA : BOOLEAN
END_ENTI TY;

END_SCHEMA;

Fig. 12: Inheritance with ONEOF constraint

Schema Interfacing. In Express, a schemais a container for entities, types, and rules.

Often there is no single context in which all the elements in the schema may be used. Some

definitions, however, may be used more appropriately in some

www.manaraa.com

context than others. Schema interfacing allows for
dedicated contexts to be composed from elements
in other schemas. Schema reuse is achieved
through the use of two EXPRESS constructs: USE
and REFERENCE. These constructs import
definitions from other schemas into new ones.
Entities imported by the USE keyword become
first-class elements in the new schema. These
imported elements behave asif they were
originally defined locally in that schema. Instances
of these elements can independently exist in an
information base defined using this schema. On the
other hand, definitions imported by REFERENCE
become second-class elements in the new schema.
REFERENCED elements cannot have independent

instances in an information base defined using that

SCHENA st udent Schena2;

ENTI TY student SUPERTYPE OF
((ONECF
(full _time, part_time))
ANDOR
(ONECF (under grad_st udent,
gr aduat e_st udent)

)

ID : STRING;
END_ENTI TY,

ENTITY full _tine SUBTYPE OF (student);
END_ENTI TY;

ENTI TY part_tinme SUBTYPE OF (student);
END_ENTI TY;

ENTI TY under grad_st udent SUBTYPE CF
(student);

END_ENTI TY;

ENTI TY graduat e_student SUBTYPE OF
(student);
i sGA
END_ENTI TY;

: BOCLEAN

END_SCHEMA;

Fig. 13: Inheritance With ONEOF And ANDOR
Constraints

schema; any use of instances of items in the referenced schemas must reference instantiated

itemsin the origina schema.

Schema interfacing can be used to create schemas that are tailored to specific contexts by

selecting only relevant entities. One technique for schema interfacing, subtype pruning, isa

method for importing entities without their subtypes. A second form of schema interfacing,

chaining, is the imports definitions into a schema indirectly, by including schemas that also

import other definitions. Chaining is possible because items imported into other schemas with

USE become local to that schema—hence, importable into other schemas. EXPRESS imposes no

[imit on how many times a type can be imported.

AP Modularization

I ntroduction

The Application Protocol (AP) isthe basic unit for information exchange in STEP. The

current state of practice has been that when a need arises for a new AP, development begins from

www.manaraa.com

scratch. Like software modules, existing APs were not designed with reuse in mind; it is
difficult to apply existing modules to new applications. Recent STEP meetings and workshops
have discussed the possibility of creating modules that are generic and designed to allow further

extension and reuse.

Goals Of AP Modularization

The goa of modularized Application Protocols, like in software, is to reduce
development time and effort, which translates to a reduction in cost. The STEP AP initiative
aims to create reusable AP modules by 1) separating

business use from data specification, 2) separating Modularized AP

conformance classes from data specifications, and AP
CC || "big™ AM || AAM

3) delaying the definition of scope and domain till a

later stage (usually left for application developers).

ARM ARM ARM
Modularization aims to allow what is known as AP
interoperability, which refers to the ability to “reuse LAl MT MT
data created by implementation of one AP by an AlM AIM]| AlM
implementation of another AP” [16]. AM AM AM

AR || GIR

Structure Of The Modularized AP

A modularized AP is made up .of
Application Modules (AM). The Application
Module is the basic reusable construct in the modularized AP. The AM is a data specification
that contains the Application Reference Model (ARM), Mapping Table (MT), and a Module
Interpreted Model (MIM) [16]. The Mapping Table shows how items in the ARM trandate to
generic constructs available in the Integrated Resources [21]. The Module Interpreted Model

Figure 14: Structure Of A Modularized AP

(MIM) refersto an AIM for a specific Application Module. Figure 13 shows the structure of the
modularized AP. Unlike the non-modularized AP, the modularized AP does not contain the
ARM, Mapping Table, and the AIM; it uses them by referencing Application Modules. Each AM
contains the ARM, Mapping Table, and MIM.

In the modularized AP, the principal data specification (information model) is the
Application Module. Each Application Module contains an ARM, AIM, and the Mapping Table.

www.manaraa.com

The AMs are designed so that each AM defines an information model for one or more concepts.
For the purpose of reuse, the AMs are designed with different levels of generality ranging from
application specific to very generic. An AM can reference other AMs. In amodularized AP
there is one application specific AM called the “big” AM. The “big” AM references other
generic AMs, which in turn can reference other AMs. An AM may reference another AM for
various reasons. For instance, an Application Module A may reference another Application
Module B to define a speciaization of a concept in Application Module A or to define a usage
for an entity in Application Module A [25].

37

www.manaraa.com

CHAPTER 4
METRICS APPLICATION AND SURVEY ANALYSIS

Selected Metrics And M easurement Units

Introduction

One of the goals of thisthesisis to be able use SE metrics to evaluate the quality of
EXPRESS database modules. One difficulty with the goal is that software and database are
different domains with their own languages. However, software design and database design
have common goals, like maintainability and reusability. Furthermore, the modeling language
being studied, EXPRESS, provides features that are comparable to features found in modern
object-oriented software design and implementations. These correspondences between
EXPRESS and OO programming languages make it possible to apply some software engineering
metrics to database modules with little or no modifications. If similar metrics that are used in
software engineering can be applied to EXPRESS modules, then AP Modularization can make
use of such metrics.

The nature of existing APs (EXPRESS modules) is the magjor cause behind AP
Modularization, the basis for this study. Current APs are single, monolithic units that contain all
required definitions, such as entities, types, functions, and procedures, in one single EXPRESS
schema. The monolithic nature of the APs hinders AP reuse. Hence, the purpose of AP
Modularization is to develop APs with smaller, reusable modules (in this case AMs). Before
presenting the metrics to be used, and the measurable units in EXPRESS schemas, the goals of
AP modularization in terms of reuse and how these goals relate to the proposed measurement
model will be described.

The Reuse Model For AP Modularization
The process of developing smaller, independent, and reusable APs in STEP terminology

is caled AP Modularization. For the purpose of this research, a simple model, as shown in
Figure 15, is used to show the goal of AP Modularization.

www.manaraa.com

Feuse "as-ig" |

Feuse in AP Reusze by Extension |

Feuse by Specialization |

Fig. 15. Reuse Model For AP Modularization

The reuse model identified here shows three different of kinds of reuse in AP development.

These types of reuse are explained below.

Reuse “asis’. A reusable component of an AP (i.e. AM) can be used without any
change to it. Thisform of reuse is referred to as Reuse* as-is’ . In this research, Reuse “as-is’ is
the type of AP reuse being investigated. The survey conducted sought to deter mine the effect of
coupling on Reuse “asis’.

Reuse By Extension A module can also be modified by extending it (adding new items

to the data specification). Here, thiskind of reuseis referred to as Reuse By Extension.

Reuse By Specialization A module can be modified for the purpose of specialization

(add scope or restriction to existing module). This kind of reuse is referred to as Reuse by

Specialization. Figure 13 shows the reuse model from the AP modularization point of view.

Description of Proposed Candidate Metrics
This section lists and describes the actual metrics that will be used in the proposed

measurement model. In addition, the reason for choosing each metric will be provided as well as
how each metric fits in the overall goal of thisresearch.

Data Abstraction Coupling (DAC). In EXPRESS, an attribute may have its type as one of
the EXPRESS base types, often called primitive types: e.g. STRING, INTEGER, and NUMBER.
An attribute may aso have its type as a user-defined type. A user-defined type in this case may

39

www.manaraa.com

be an Entity type, or an Enumeration type, or a Select type. DAC is an object-oriented metric
proposed by Li [15]. This metric measures the use of classes as data types in attribute
declarations. The measurement unit is a class. The viewpoint of DAC is that the use of other
classes as types in the declaration of attributes introduces coupling between those classes. In this
research, different versions of DAC will be used. The different forms of DAC that will be used

in this research are listed below.

Data Abstraction Coupling from Entity Types (DAC ENT). This metric will be used to

determine the number of entities that have other entities as data types in their attribute

declarations.

Data Abstraction Coupling from Enumeration Types (DAC ENUM). This metric will be
used to determine the number of entities that have Enumeration types as data types in their

attribute declarations.

Data Abstraction Coupling from Select Types (DAC SEL). This metric will be used to

determine the number of entities that have Select types as data types in their attribute

declarations.

Data Abstraction Coupling from Restricted (Defined) Types (DAC DEF). This metric

will be used to determine the number of entities that have Restricted types as data typesin their

attribute declarations.

Number of Supertypes (N SUP). N_SUP isbased on Li's Number of Ancestors (NAA)
metric. Li's NAA issimilar to C&K's DIT but NAA captures exactly which classes can affect a

specific classin ahierarchy. In a complex inheritance hierarchy where a class may inherit from
multiple parents, NAA is useful for tracing al the parents of any given class. The proposed

metric, N_SUP, will be used to count the number of entities that a given entity inherits directly
from. A high value for N_SUP may indicates that a class has a high risk of being affected by a

change in many classes (supertypes).

www.manaraa.com

Number of Subtypes (N SUB). This metric is based on NOD (Number Of Descendants),
an object-oriented metric proposed by Li [15]. NOD is a measure of the breath of an inheritance

hierarchy. It is a count of the immediate children of aclass. Like DIT, NOD assumes aview that
the more children a class has, the more likely it is to reuse attributes and methods from the parent
base class. However, a change in the base class affects the children. In this research, N_SUB is
used (instead of NOD) to count the number of entities subclassing directly from another entity.

Versions of N_SUB such as average N_SUB will also be used to evaluate a sample schema.

Depth Of Inheritance (DIT). Originaly proposed by Chidamber and Kermerer [5], this

metric measures the length of an inheritance tree from a node to the root (supertype). The
viewpoint is based on the idea that the deeper a class is in an inheritance hierarchy, the greater
the ability to reuse attributes and methods. However, deep inheritance hierarchies introduce
complexity to classes because prior understanding of classes higher in the hierarchy is required

in order to fully understard classes in the lower parts of the hierarchy. Another downside to deep
inheritance hierarchies is that a change high in the hierarchy is more likely to affect classes lower
in the hierarchy. The proposed measurement model is also expanded to show the metrics that are

used in this research as shown in Figure 16.

Depth Of Data Abstraction Coupling (DAC DEPTH). Attributes that use EXPRESS
base types and Enumeration types as data types involve coupling with EXPRESS primitive

types. This form of coupling is considered negligible in this research. However, attributes that
use Entity types, Select types, and Restricted types as data types become coupled (in aform of
physical dependency) with those types. For instance, if an attribute X uses an Entity type T asa
data type in its declaration, then X becomes physical dependent on entity T (X is coupled to T).
If T isaso dependent on another entity Y, for instance, viainheritance relationship, then
attribute X indirectly becomes coupled to Y (transitivity). Thisform of coupling is measured by
finding the longest path to the last entity type in such atransitive dependency. The metric used
for measuring this form of coupling is caled DAC_DEPTH.

a4

www.manaraa.com

DAC

oI

Reusability Understandability Coupling M=LB

rEUP

Dac_DEPTH

Goal Factor Criteria Metrics

Fig. 16: Complete Measurement Model With Metrics

Applying The Metrics
The candidate metrics were applied to a subset of the EXPRESS module AP302 AIM
(1SO 10303-203). This module was chosen for the following reasons. The version of the AP 203

used, besides being current (dated May 2000), also has a reasonable size. Although not too large,
the AP 203 contains all the EXPRESS features that are being sought in this research. Due to its
moderate size, survey participants (mostly students with basic EXPRESS skills) were more
comfortable using it than it would have been with other APs that are published in the STEP
standard.

Types Of Coupling M easured

There are severa types of coupling found in EXPRESS modules. However, this research
identified two most common forms of coupling:
Coupling through data abstraction (DAC)
Coupling through inheritance (C_INH)
The research focused on these two forms of coupling because in the current un-
modularized APs, Data Abstraction and Inheritance are found in the magjority of the type

definitions in the schemas.

&

www.manaraa.com

Coupling Through Data Abstraction (Data Abstraction Coupling - DAC). Thistype of

coupling occurs when an attribute uses a user-defined type as its data type. In EXPRESS, a user-
defined type can be created by:

1) Using an Entity type (DAC_ENT)

2) Using a Select type (DAC_SEL)

3) Using an Enumeration type (DAC_ENUM)

4) Using Restricted type (DAC_DEF)

Each of these user-defined types can, therefore, result in a data abstraction coupling. Figure 16-

20 illustrates different forms of DAC and how they are measured.

= . TvPE text= STRING;
TYPE text = STRING; | ot I | — |
END_TYPE; DAC = 0 END_TYPE; T DAC = 1
STRING ENTIT* persan; | tct |
name: et

EMD_ENTIT™
Fig. 17: DAC_DEF

Fig. 18: DAC_DEF

ENTIT persan;

bame: STRING: | action | TYFE button_status =

e EHTIWI ; T DAL = 1 EMUMERATION OF [OM, OFF | | . |

- ’ END_TFE:
ENTITY action; | person | 1
initiator: person; ENTIT button; | buthon_status |
EMD_EMTIT: *STR'“G state: buthon_stats; AC = 1
EMD_EMTITY; B
Fig. 19: DAC_ENT

Fig. 20: DAC_ENUM

www.manaraa.com

T PE niumber_wvalue = nurmber;
EHDO_TYFE:;

T¥PE fesd_value = STRING;
ENDO_TYFE;

TvPE identfier = SELECT

[rumber_value, text_valus | |

| event |
1 DAC = 2
| identifier |
I 1
number_walues | | texd_walue

ENDO_TYFE;

ENTITY ewent;
id: idenfifiar;
EMO_EHNTITY;

{ HUMEEFR.)

i STRING)}

Fig. 21: DAC_SEL

In this research, data abstraction coupling due to the use of each of the four user-defined

types is tested to see if they have any effect on reuse.

Coupling Through Inheritance (C INH). Thistype of coupling occurs through

inheritance. In an EXPRESS inheritance, the subtype entity is coupled to the supertype entity by

referencing the supertype in its SUBTY PE clause. The supertype entity may aso mention the

names of all subtype entitiesin its SUPERTY PE clause, resulting in further coupling. Figure 20

illustrates the coupling though inheritance.

ENTIT™ persan;
name: STRINIG:
EMO_EMNTIT™;

ENTIT™ rmale:
SUBTYFPE OF [person]
EMO_EMNTIT™;

| male

1

| persan

STRING

C_INH =1

Fig. 22: Coupling Through Inheritance

www.manaraa.com

CHAPTER 5
ANALYSIS

Analysis Of Sample AP
In this research, a sample AP (Appendix A) was selected for study to determine if

coupling has any effects on the use

of EXPRESS schema items. Table 1: General Statistics About The Sample Schema
The candidate metricswere |General Statistics : Type Composition

applied to the sample EXPRESS Number | Percentage

schema to determine what features Number of Entities 151 71%

dominate the schema definitions. Number of Restricted types 28 13%
Number of Select types 31 14%

The sample AP was the single Number of Enum types 4 2%

schema AP302 AIM (1SO 10303- Total 433 100%

203). The schema was modified to
reduce the size and complexity so that students with minimum EXPRESS skills would be able to
useit. The main features of the AP that were analyzed are use of inheritance and data

abstraction. The following observations resulted from applying the candidate metrics.

Entity types composed 71% Type Composition

of all type definitions in the schema.

There were 219 attribute types B Number of Enties

distributed in the 151 entities found

2%

14%

@ Number of Restricted

13% types

the schema giving avery low
average of 1.5 attributes per entity. 0 Number of Select types
Of the 151 entities, 43% had no

attributes, while 59.6% had between

O Number of Enum types

one and three attributes; only 17%
Fig. 23: Type Composition For The Sample Schema
of the entities had four or more attributes.

schemawas six and only one entity had this number.

www.manaraa.com

The type composition also included 28 Restricted types which makes up about 13% of
the total type composition. Of this 13%, none had more than one level of redefinition. In fact,
over 80% of al the Restricted types were based directly on EXPRESS base types (zero level of
redefinition).

Fourteen percent of the all the type definitions in the schema consist of Select types.
Enumeration types make up 2% of the schema type definitions. In the analysis, it was found that
only 1.8% of attributes used Enumeration types in their definitions, and 2.7% for Select types.

Because Enumeration types do not reference any other types in their definitiors, they do not add

any form of coupling to the schema.
DAC by percentage
O DAC_ENUM
Attribute Types And Data Abstraction Coupling poao BDAC_SEL
DAC ODAC_DEF
i i 46% 44%
Data Abstraction Coupling (DAC) DoAC ENT
results when attributes use other user-defined
B Base type
types such as entity types as data types. In the attributes
sample AP, DAC ENT was found to be the Fig. 24: Data Abstraction By Percentage

major form of coupling in the schema.

DAC_ENT causes more physical dependency for entities than any other form of coupling in the
schema. Of the 219 attributes found in the schema, 46% are involved in DAC_ENT (i.e.
attributes that use Entity types as their data types), about 44% use Restricted types as data types.
The remaining 10% use Enumeration types (DAC_ENUM), Select types (DAC_SEL), and
EXPRESS base types as their data types (See Figure 24). In the schema analyzed, 44.5% of all
the attributes had a DAC_DEPTH value of 2 or higher. The average value for DAC_DEPTH is
1.6, which shows that Data Abstraction Coupling in general is low for the schema.

Inheritance

Inheritance is another major cause of coupling in an EXPRESS schema. Entities become
physically and logically dependent on each other through inheritance relationships. The schema
that was analyzed made very little use of inheritance and, hence, coupling resulting from such
relationships is minimal. Although out of the 151 ertities in the schema, 62% were involved in
an inheritance relationship, the average depth of inheritance (average DIT) is about one (1.1).

www.manaraa.com

37.7% of all the entities were not involved in any inheritance relationship. Of the 111 entities
involved in inheritance relationships, 19.2% were supertypes, and 7.3% were root supertypes.
That means all the inheritance hierarchies in the schema are built on 7.3% of the entities. In
terms of multiple inheritance, the majority of the entities in the schema (52%) have only one
subtype, while only about 1 (1.3) % two or more supertypes. The value for DIT (the longest path
from any supertype to a subtype) was found to be 3; the average DIT is 1.1. Table 2 shows the
valued obtained from applying the metrics.

47

www.manaraa.com

Table 2. Values Obtained From Applying The Metrics

Entity Analysis

DAC_ENT_DEPTH

IAvg No. of Attributes/Entity 1.5 Range Frequency %
Avg DIT 1.1 0 7 6.9%
Deepest DIT 3 1 49 48.5%
2 27 26.7%

DAC # % 3 17 16.8%
DAC ENUM 4 1.8% 4 1 1.0%
DAC SEL 6 2.7% Total 101
DAC DEF 96 43.8%
DAC ENT 101 46.1% No. of Attributes / Entity
Base type attributes 12 5.5% Range Frequency %

0 43 28.5%
Max DAC_ENT_DEPTH 4 1to3 90 59.6%
Max DAC_SEL_DEPTH 3 4t06 17 11.3%
Max DAC_DEF_DEPTH 1 6 plus 1 0.7%
IAvg DAC_ENT_DEPTH 1.5 No.of Supertypes / entity
Avg DAC_SEL_DEPTH 1.3 Range Frequency %
Avg DAC_ENUM_DEPTH 0.0 0 70 46.4%
Avg DAC_DEF_DEPTH 1.0 1 79 52.3%
Inheritance # % 2 plus 2 1.3%
Total No. of Root Supertypes 11 7.3% 151 100.0%
NSUP 29 19.2%
NSUB 82 54.3% Max path to root
Total No. of Entities with inheritance 94 62.3% Range Frequency
Total No. of Entities without inheritance 40 37.7% 1 39

2 15
Max No. of Supertypes / Entity 5 3 17
Max No. of Subtypes / Entity 15 4 7
IAvg No. of Subtypes / Supertype 3
Number of Complex Entities 2
Max No. of attributes / entity 12

www.manaraa.com

Anaysis Of Survey Data
In the survey (presented in Appendix F), the sample schema (Appendix A) to which

metrics have been applied was given to students with basic but uniform EXPRESS skills.
Participants were asked to locate and do a manual copying of selected schema items into a new
schema. The survey involved schema items with varying levels of coupling in the form of
inheritance and data abstraction as described in Chapter 4. The time taken to completely locate a
type and all other types that are coupled to it was recorded. The assumption here was that,
provided the search time for al types in the schema is constant and equal, the time required to
locate atype and all other types that are physically dependent (coupled) on that type will be
greater than the time required to locate a type with no physical dependency (coupling). The
survey collected data for the following levels of coupling:

1. DAC leve 0: atypeisnot coupled to any other type;

2. DAC levd 1: atypeis coupled to only one other type (in aform of physical dependency)

through an attribute;

3. DAC leve 2: atypeis coupled to two other types (in aform of physical dependency)

through an attribute;

4. DAC level 3: atypeiscoupled to three other types (in aform of physical dependency)

through an attribute;

Similar categories were used for inheritance. An entity with inheritance level 0 (DIT=0)
means the entity has no inheritance. Inheritance level 1 (DIT=1) means an entity has an
inheritance with depth of one.

In the analysis of the survey data, the lower-tailed method for hypothesis testing was used
to compute the difference in the mean values of the different categories of DAC and inheritance
described above. The statistical method required the mean and the variance to be computed for
each category or level to be compared. The computed values for the mean and variance are
shown in Table 3. Using Equation 1, the test statistics z are computed and shown in Table 4.

Assuming anormal distribution, with a significant level of 0.05, the normal deviate
associated with .05 significant level was found to be 1.96. This means that (using the lower-
tailed method) the difference between any two mean values that is greater than or equal to -1.96
is considered significant and can be used as the basis for rejecting the Null hypothesis, Hy (The

time required to use an existing EXPRESS module does not increase significantly as coupling

49

www.manaraa.com

between the modules increases), and accepting the alternative, H; (The time required to use an

existing EXPRESS module increases significantly as coupling between the modules increases).

Equation 1. Formula For Computing Normal Deviate For Comparing Means

Table 3. Mean And Variance For Different Levels Of DAC And Inheritance

DAC_ENT Inheritance DAC_SEL DAC_DEF

Level [Mean |[Variance | |Level |Mean |Variance Level Mean |Variance Level |Mean [Variance
LO | 2.85 2.99 L1 | 2.39 3.07 L1 | 3.25| 17.71 L1 | 272 1.88
L1 | 4.05 8.37 L2 | 2.70 4.00 L2 | 484 | 8.22 L2 |2.76 2.55
L2 |4.30 6.95 L3 | 3.00 6.24 L3 | 498 | 16.95 L3 | 3.08 2.99
L3 | 6.20 | 20.04

www.manaraa.com

Table 4. Computed Test Statistic z For Different Levels Of DAC And Inheritance

DAC _ENT Inheritance DAC_SEL DAC DEF

M1| M2 z M1 M2 Z M1 M2 z M1 M2 z
Lo| L1 2.8 L1 L2 | 0.7 L1 L2 2.1 L1 L2 0.1
Lo| L2 3.6 L1 L3 | 1.1 L1 L3 1.9 L1 L3 0.9
LO| L3 5.5 L2 L3 [0.5 L2 L3 0.2 L2 L3 1.1

L1] L2 0.5

L1| L3 3.2

L2| L3 2.9

A test statistic z was computed for the mean values that were compared using the
Equation 1. Tables 4 show the means that were compared and the values for the test statistic z.
In Tables 4, the columns M1 and M2 denote the means to be compared. Hence, LO, L1 withaz
value of 2.8 for DAC_ENT means that, 2.8 was found to be standardized difference between
mean values for DAC _ENT level 0 and 1.

Observing the z values for al the comparisons, it is seen that there exists a significant
difference for all the means that were compared. The value for test statistic z falls with the
acceptance region of the lower-tailed test. These results support the main hypothesis H; and lead

to the rgjection of the alternative hypothesis, Ho.

51

www.manaraa.com

CHAPTER 6
CONCLUSION

In all the categories of coupling investigated in the survey, DAC_ENT has the greatest
impact on reuse of existing schemaitems. The time required to use a smple EXPRESS type
increases at a higher rate for DAC_ENT than any other form of coupling investigated. This could
be because in an EXPRESS schema, DAC_ENT can result in arecursive definition as illustrated
below. A>B, B>A. Both A and B are entity types having DAC_ENT. In cases where the level
of DAC is high, it becomes difficult to trace al the types that are involved in a chain of DAC. A
recommendation for designing EXPRESS modules for reuse seeks a reduction of DAC_ENT in
EXPRESS schemas. For instance, an attribute that uses an entity type as its data type may use a
primitive type unless the attribute is composite. If that attribute uses an entity type as its data
type because there is arule in that entity, then that a rule may be migrated to a global rule. This
may lead to clearer design without loss of semantics. Such a design may be easy to understand
and potentially easy to reuse.

Analysis of the sample schema also reveals that very few instances of DAC_SEL existed
in the schema (i.e. very few attributes used Select types as data types). Despite the minimal use
of Select types as data types (DAC_SEL), the survey results show that Select types bring the
second strongest form of coupling to the schema. This is seen from the increasing mean time
differences between DAC_SEL values as DAC_SEL levelsincreased. The reason for this
increasing difficulty in using items with DAC_SEL could be due to the content of the Select type
definitions. Select types definitions may include other user-defined types such as Entity types,
Restricted types, Enumeration types, and even other Select types. The other types that are
mentioned in the Select type definition may bring other forms of coupling to the Select type
making it more complicated to use.

Inheritance also brings a modest amount of coupling to the schema. Although the mean
time for using entity types with different level of DIT increased as the depth of inheritance
increased, the increase was not as pronounced as DAC_ENT and DAC_SEL. However,

minimizing inheritance depth may improve reuse of the schema types.

52

www.manaraa.com

In summary, this research has accomplished the following: a model has been established
that predicts the reusability of EXPRESS modules. A relationship between coupling and
reusability of EXPRESS modules has been shown, and a set of metrics has been devel oped that

measure coupling in EXPRESS modules. This research has provided a foundation for further
research in predicting the reusability of EXPRESS modules.

www.manharaa.com

[1]

[2]

[3]

[4]

[3]

[6]

[7]

[8]

[9]

[10]
[11]

[12]

BIBLIOGRAPHY

Alencar P. et a, Formal Specification of Reusable Interface Objects. Proceedings of the
17th international conference on software engineering on Symposium on software
reusability, 1995, pp 88 - 96

Bieman, James M, Kang, Byung-Kyoo. Measuring Design-Level Cohesion. |EEE
Transactions on Software Engineering. Vol. 24, No.2, Feb. 1998

Briand et a. A Unified Framework for coupling Measurement. |EEE Transactions on
Software Engineering. vol. 25, no. 1, Jan-Feb 1998 1999.

Cartwright, Michelle. An Empirical view of inheritance. Information and Sfoftware
Techonolgy. Vol. 40. 1998

Chidamber, Shyam, Kermerer, Chris F. 1EEE Transactions on Software Engineering.
vol. 20, no. 6, June 1994.

Dai, We. Development of Reusable Components: Preliminary Experience. Proceedings
of the 17th International Conference on Software Engineering on Symposiumon
Softwar e Reusability, 1995, pp. 238 - 246

Daniani E. et a. A Hierarchy-Aware Approach to Faceted Classification of Object-
Oriented Component. ACM Transactions on Software Engineering and Methodol ogy.
vol. 8, no. 3, July 1999, pp. 215-262

Etzkorn, Letha, Bansiya, Jagdish, Davis, Carl. Design and Code Complexity Metrics for
Object-Oriented Classes. Quality Metric for Object-Oriented Design. Journal of Object-
Oriented Programming. April 1999.

Fenton, Norman E., Pfleeger, Shari L. Software Metrics. A Rigorous & Practical
Approach. 2" ed. PWS, 1997.

Fowler, Julian. STEP for Data Management Exchange and Sharing. 1995.

Frakes, W. Terry, C. Software Reuse: Metrics and Models. ACM Computing Surveys. vol.
28. No. 2, June 1996.

Gillibrand, David, Liu, Kecheng. Quality Metric for Object-Oriented Design. Journal of
Object-Oriented Programming. Jan 1998.

www.manaraa.com

[13]

[14]
[19]

[16]

[17]

[18]

[19]

[20]
[21]

[22]

[23]

[24]

[29]

[26]

[27]

[28]

Hardwick, Martin. STEP Data Exchange Standard Moves Into I mplementation Phase.

http://www.steptool s.com/library/stepimpl .html

Loffredo, David. Fundamentals of STEP Implementation. http://www.steptools.com/

Li, Wei. Another Metric Suite for Object—Oriented programming. Journal of Systems and
Software. vol. 44, Feb. 1998

Mohan, Arvind; Nazemetz, John. ISO 10303 Architecture-Working of
|SO/TC184/SC4/WG10

http://www.okstate.eduind-engr/step/WEBFI L ES/papers/Architecture_index.html

Patel, Sukesh, Chu, William, Baxter, Rich. Measure For Composite Module Cohesion.

Proceedings of the 14™ International Conference on Software Engineering, 1992.
Pressman, Roger S. Software Engineering: A Practitioner’s Approach. 4™ ed. McGraw-
Hill, 1997
Poulin et a. The business case for software reuse. IBM Systems Journal. Vol. 32, no. 4.
1993.

Prieto-Diaz, Ruben. Status Report: Software Reusability. IEEE Software. May 1993.
Ravat, Jayesh; Nazemetz, John. Introduction to STEP.

http: //imww.okstate.edu/ind-engr/step/WEBFILES Paper ¢/I ntroduction_index.html
Reyes, Lorna, Carver, Doris. Predicting Object Reuse Using Metrics. Proceedings, SEKE
'98: The 10™ Conference on Software Engineering, June 1998.

Salil Pradihan, Nazemetz, John. STEP Goals
http://www.okstate.edu/ind-engr/step/WEBFI L ES/Papers/Goals index.html

Shih, Timothy, Lin, Yule-Chen, Pai, Wen, Wang, Chun-Chia. Object Oriented Design
Complexity based on Inheritance Relationships. International Journal of Software

Engineering. vol. 8, no. 4, 1998.
STEP Modularization Repository http://wgl0step.aticorp.org/M odul es/index.htm
The STEP Project. http://www.nist.gov/sc4/www/stepdocs.htm

Zage, M. Wayne, Zage, M. Dolores. Evaluating Design Metrics on Large-Scale Software.

|EEE Software. 1993.

Zhang, Jing, Warren, Thomas L. Product Data Exchange
http://www.okstate.edu/ind-engr/step/\WWEBFI L ES/Papers/PDE _index.html

www.manaraa.com

APPENDIX A

EXPRESS LISTING FOR EDITED VERSION OF AP 203(1SO-10303-203)
Appendix A provides alisting (in EXPRESS language) of the schema that was used in
thisresearch. A summary of the analysis of this schemais presented in Chapter 5. Appendix B,
C, D, and E provide detailed analysis of the schema. This schemawas also used in the survey
(Appendix F). This schema was modified to reduce the size and complexity to fit the scope of

this research.

(* AIM long form FOR ISO 10303-203 amendment 1
SO TC184/SC4/WG3 N916
Larry McKee
2000-05-04

)
SCHEMA config_control_design;

CONSTANT

dummy_gri : geometric_representation_item := representation_item(") ||
geometric_representation_item();

dummy_tri : topological _representation_item := representation_item(")
|| topological_representation_item();

END_CONSTANT,;

TY PE ahead_or_behind = ENUMERATION OF
(ahead,
behind);

END_TYPE; -- ahead_or_behind

TY PE approved_item = SELECT
(product_definition_formation,
product_definition,
configuration_effectivity,
)

END_TYPE; -- approved_item

TYPEOIld_approved_item= SELECT -- KOT
(product_definition_formation,
product_definition,
configuration_effectivity,
configuration_item,
security_classification,
change_request,
change,
start_request,
start_work,
certification,
contract);

END_TYPE; -- approved_item

TY PEapproved_source of reference = SELECT

(approved_item, certified_item);
END_TYPE; -- axis2_placement

www.manaraa.com

TY PE area_measure = REAL;
END_TYPE; -- area_measure

TYPE axi2_placement = SELECT
(axis2_placement_2d,
axis2_placement_3d);

END_TYPE; -- axis2_placement

TYPE b_spline_curve form = ENUMERATION OF
(polyline_form,
circular_arc,
liptic_arc,
parabolic_arc,
hyperbolic_arc,
unspecified);
END_TYPE; -- b_spline_curve_form

TYPE b_spline surface form= ENUMERATION OF
(plane_surf,
cylindrical_surf,
conical_surf,
spherical_surf,
toroidal_surf,
surf_of_revolution,
ruled_surf,
generalised_cone,
quadric_surf,
surf_of_linear_extrusion,
unspecified);
END_TYPE; -- b_spline_surface form

TY PE boolean_operand = SELECT
(solid_model);
END_TYPE; -- boolean_operand

TY PE certified_item = SELECT
(supplied_part_relationship);
END_TYPE; -- certified_item

TY PE change_request_item = SELECT
(product_definition_formation);
END_TYPE; -- change request_item

TY PE characterized_definition = SELECT
(characterized product_definition,
shape_definition);

END_TYPE; -- characterized_definition

TY PE characterized_product_definition = SELECT
(product_definition,
product_definition_relationship);

END_TYPE; -- characterized_product_definition

TYPE classified_item = SELECT
(‘assembly_component_usage);
END_TYPE; -- classified_item

TY PE context_dependent_measure = REAL ;
END_TY PE; -- context_dependent_measure

TY PE contracted_item = SELECT
(product_definition_formation);
END_TYPE; -- contracted _item

TY PE count_measure=NUMBER,
END_TYPE; -- count_measure

TY PE curve_on_surface = SELECT

(pcurve,
surface_curve,

57

www.manharaa.com

composite_curve_on_surface);
END_TYPE; -- curve_on_surface

TY PE date_time_item = SELECT
(product_definition,
change_request,
start_request,
change,
start_work,
approval_person_organization,
contract,
security_classification,
certification);

END_TYPE; -- date_time_item

TY PE date time sdect = SELECT
(date,
local_time,
date_and_time);

END_TYPE; -- date_time select

TYPE day_in_month_number =INTEGER,;
END_TYPE; -- day_in_month_number

TYPE day_in_week_number = INTEGER;
WHERE

wrl: (1 <= SELF) AND (SELF <= 7));
END_TYPE; -- day_in_week_number

TYPE day_in_year_number = INTEGER;
END_TYPE; -- day in_year number

TYPE descriptive_measure = STRING;
END_TYPE; -- descriptive_measure

TY PE dimension_count =INTEGER;
WHERE

wrl: (SELF >0);
END_TYPE; -- dimension_count

TY PEformal_approval = SELECT (certification, approva);
END_TYPE;

TYPEfounded item_select = SELECT
(founded_item,
representation_item);
END_TYPE; -- founded_item_select

TY PEgeneric_definition = SELECT
(item_definition_select);
END_TYPE;

TY PE geometric_set_sdlect = SELECT
(point,
curve,
surface);

END_TYPE; -- geometric_set_select

TYPE hour_in_day = INTEGER,
WHERE

wrl: (0 <= SELF) AND (SELF < 24));
END_TYPE; -- hour_in_day

TYPE identifier = STRING,
END_TYPE; -- identifier

TY PE item_definition_sdlect = SELECT
(product_definition_sdect);
END_TYPE; -- item_definition_select

www.manharaa.com

TY PE knot_type =ENUMERATION OF
(uniform_knots,
unspecified,
quasi_uniform_knots,
piecewise_bezier_knots);
END_TYPE; -- knot_type

TYPE label = STRING;
END_TYPE; -- label

TY PE length_measure = REAL ;
END_TYPE; -- length_measure

TYPE list_of_reversible topology_item = LIST [0:7] OF
reversible_topology_item;
END_TYPE; -- list_of reversible topology_item

TY PE mass_measure= REAL ;
END_TYPE; -- mass_measure

TY PE measure_vaue = SELECT
(length_measure,
mass_measure,
plane_angle_measure,
solid_angle_measure,
area_measure,
volume_measure,
parameter_value,
context_dependent_measure,
descriptive_measure,
positive_length_measure,
positive_plane _angle_measure,
count_measure);
END_TYPE; -- measure value

TY PE minute_in_hour = INTEGER,
WHERE

wrl: (0 <= SELF) AND (SELF <= 59));
END_TYPE; -- minute_in_hour

TYPE month_in_year_number =INTEGER;
WHERE

wrl: ((L <= SELF) AND (SELF <= 12));
END_TYPE; -- month_in_year_number

TY PE parameter_value = REAL;
END_TYPE; -- parameter_vaue

TY PE peurve_or_surface= SELECT
(pcurve,
surface);

END_TYPE; -- pcurve_or_surface

TY PE person_organization_select = SELECT
(PHSOU, .
organization,
person_and_organization);

END_TY PE; -- person_organization_select

TY PE plane_angle measure= REAL ;
END_TYPE; -- plane_angle_measure

TY PE positive_length measure = length_measure;
WHERE

wrl: (SELF >0);
END_TYPE; -- positive_length_measure

TY PE positive_plane_angle_measure = plane_angle_measure;
WHERE
wrl: (SELF >0);

www.manharaa.com

END_TYPE; -- positive_plane_angle_measure

TY PEproduct_definition_select = SELECT
(product_defintion_formation);
END_TYPE; -- product_definition_formation

TYPE second _in_minute = REAL ;
WHERE

wrl: (0 <= SELF) AND (SELF < 60));
END_TYPE; -- second_in_minute

TYPE set_of_reversible topology_item = SET [0:7] OF
reversible_topology_item;
END_TYPE; -- set_of_reversible_topology_item

TY PE shape_definition = SELECT
(product_definition_shape,
shape_aspect,

shape_aspect_relationship);
END_TYPE; -- shape_definition

TYPE shell = SELECT
(vertex_shell,
wire_shell,
open_shdll,
closed_shell);

END_TYPE; -- shell

TYPE s_prefix =ENUMERATION OF
(exa,
peta,
tera,
giga,
mega,
kilo,
hecto,
deca,
deci,
centi,
milli,
micro,
nano,
pico,
femto,
atto);
END_TYPE; -- 5_prefix

TYPE s_unit_name =ENUMERATION OF
(metre,
gram,
second,
ampere,
kelvin,
mole,
candela,
radian,
steradian,
hertz,
newton,
pascal,
joule
watt,
coulomb,
volt,
farad,
ohm,

www.manharaa.com

degree celsius,
lumen,
lux,
becquerel,
gray,
severt);
END_TYPE;-- §_unit_name

TYPE solid_angle measure = REAL;
END_TYPE; -- solid_angle_measure

TY PE source =ENUMERATION OF
(made,
bought,
not_known);
END_TYPE; -- source

TYPE specified_item = SELECT
(product_definition,

shape aspect);
END_TYPE; -- specified_item

TYPE start_request_item = SELECT
(product_definition_formation);
END_TYPE; -- start_request_item

TY PE supported_item = SELECT
(action_directive,
action,
action_method);

END_TYPE; -- supported_item

TY PE surface model = SELECT
(shell_based surface_model);
END_TYPE; -- surface_model

TYPE text = STRING;
END_TYPE; -- text

TY PE transformation = SELECT
(item_defined_transformation,
functionally_defined_transformation);

END_TYPE; -- transformation

TYPEunit = SELECT
(named_unit);
END_TYPE; -- unit

TY PE vector_or_direction= SELECT
(vector,
direction);

END_TYPE; -- vector_or_direction

TY PE volume_measure = REAL;
END_TYPE; -- volume_measure

TYPE week_in_year_number =INTEGER,
WHERE

wrl: ((L <= SELF) AND (SELF <= 53));
END_TYPE; -- week_in_year number

TY PE wireframe_model = SELECT
(shell_based wireframe_model,
edge based wireframe_model);

END_TYPE; -- wireframe_model

TYPE work_item= SELECT
(product_definition_formation);
END_TYPE; -- work_item

61

www.manharaa.com

TYPE year_number = INTEGER,
END_TYPE; -- year_number

ENTITY action;
name : STRING;
description : STRING;
chosen_method : action_method,;
END_ENTITY; -- action

ENTITY action_assignment
ABSTRACT SUPERTY PE;
assigned_action : action;
END_ENTITY; -- action_assignment

ENTITY action_directive;

name : STRING;

requests : SET [1:7] OF versioned_action_request;
END_ENTITY:; -- action_directive

ENTITY action_method;
name : STRING;
description : STRING;
consequence : STRING;
purpose : STRING;
END_ENTITY; -- action_method

ENTITY action_request_assignment
ABSTRACT SUPERTY PE;
assigned_action_request : versioned_action request;
END_ENTITY; -- action_request_assignment

ENTITY action_request_solution;

method : action_method;

request : versioned_action_request;
END_ENTITY; -- action_request_solution

ENTITY action_request_status,

status : labdl;

assigned request : versioned_action_request;
END_ENTITY; -- action_request_status

ENTITY action_status;
status : label;
assigned_action : executed_action;
END_ENTITY; -- action_status

ENTITY address;
internal_location : OPTIONAL labdl;
street_number : OPTIONAL label;
Street :OPTIONAL labd;
postal_box : OPTIONAL label;
town : OPTIONAL labe!;
region : OPTIONAL label;
postal_code : OPTIONAL label;
country :OPTIONAL labd;

facsimile_number : OPTIONAL labdl;
telephone_number : OPTIONAL labdl;
electronic_mail_address: OPTIONAL label;
telex_number : OPTIONAL labe;
WHERE
END_ENTITY; -- address

ENTITY advanced_face
SUBTYPE OF (face_surface);

END_ENTITY; -- advanced face

ENTITY dternate_product_relationship;
name :labd;
definition : text;

62

www.manharaa.com

dternate : product;
base : product;
basis :text;

UNIQUE
url : dternate, base;

WHERE
wrl: (aternate :<>: base);

END_ENTITY; -- dternate_product_relationship

ENTITY application_context;
application : text;
INVERSE
context_elements : SET [1:7] OF application_context_element FOR
frame_of_reference;
END_ENTITY; -- application_context

ENTITY application_context_element
SUPERTY PEOF (ONEOF (product_context,product_definition_context,
product_concept_context));
name : label;
frame_of_reference : application_context;
END_ENTITY:; -- application_context_element

ENTITY application_protocol_definition;

status : label;

application_interpreted_model_schema_name : label;

gpplication_protocol_year : year_number;

application : application_context;
END_ENTITY;; -- application_protocol_definition
ENTITY approval;

status : approval_status,

level : STRING;

END_ENTITY; -- approval

ENTITY approval_assignment
ABSTRACT SUPERTY PE;
assigned_approval : approval;
END_ENTITY:; -- approval _assignment

ENTITY approva_date time;
date time : date_time_select;
dated approva : approval;
END_ENTITY; -- approva_date time

ENTITY approva_level;
leve : STRING;
END_ENTITY; -- approval_status

ENTITY approval_person_organization;
person_organization : person_organization_select;
authorized approval : approval;
role : approval_role;

END_ENTITY; -- approva_person_organization

ENTITY approval_relationship;
name : STRING;
description : STRING;
relating_approval : approval;
related_approva : approvd;
END_ENTITY; -- approval_relationship

ENTITY approva_role;
role : label;
END_ENTITY; -- approval_role

ENTITY approval_gatus;
name: label;
END_ENTITY; -- approval_status

www.manharaa.com

ENTITY area_measure with_unit
SUBTY PE OF (measure_with_unit);
WHERE
wrl: (CONFIG_CONTROL_DESIGN.AREA_UNIT'IN TYPEOF(SELF\
measure_with_unit.unit_component));
END_ENTITY; -- area_measure_with_unit

ENTITY area_unit
SUBTY PE OF (named_unit);
END_ENTITY; -- area_unit

ENTITY assembly_component_usage
SUPERTY PEOF (ONEOF (next_assembly_usage_occurrence,
specified_higher_usage _occurrence, promissory_usage_occurrence))

SUBTY PE OF (product_definition_usage);
reference_designator : OPTIONAL identifier;
END_ENTITY; -- assembly_component_usage

ENTITY assembly_component_usage_substitute;
name :labd;
definition : text;
base :assembly_component_usage;
substitute : assembly_component_usage;
UNIQUE
url : base, substitute;
WHERE
wrl: (baserelating_product_definition :=: substitute.
relating_product_definition);
wr2: (base :<>: subgtitute);
END_ENTITY; -- assembly_component_usage substitute

ENTITY b_spline_curve with_knots
SUBTYPEOF (b_spline_curve);
knot_multiplicities: LIST [2:7] OF INTEGER,

knots :LIST [2:7] OF parameter_value;
knot_spec : knot_type;
DERIVE
upper_index_on_knots : INTEGER := SIZEOF(knots);
WHERE

wrl: constraints_param_b_spline(degree,upper_index_on_knoats,
upper_index_on_control_points,knot_multiplicities,knots);
wr2: (SIZEOF(knot_multiplicities) = upper_index_on_knots);
END_ENTITY; -- b_spline_curve with_knots

ENTITY bounded_curve
SUPERTY PEOF (ONEOF (polylingb_spline_curvetrimmed_curve,
bounded_pcurve bounded_surface_curve,composite_curve))
SUBTY PE OF (curve);
END_ENTITY; -- bounded_curve

ENTITY bounded_pcurve
SUBTY PE OF (pcurve, bounded_curve);
WHERE
wrl: (CONFIG_CONTROL_DESIGN.BOUNDED_CURVE'INTY PEORSELF\pcurve.
reference_to_curveitemd 1]));
END_ENTITY; -- bounded pcurve

ENTITY bounded_surface
SUPERTY PEOF (ONEOF (b_spline_surface,rectangular_trimmed_surface,
curve_bounded_surface rectangular_composite_surface))
SUBTY PE OF (surface);
END_ENTITY; -- bounded_surface

ENTITY caendar_date
SUBTY PE OF (date);
_component : day_in_month_number;
month_component : month_in_year_number;
WHERE

www.manharaa.com

wrl: valid_calendar_date(SELP);
END_ENTITY:; -- calendar_date

ENTITY cartesian_point

SUBTY PE OF (point);

coordinates : LIST [1:3] OF length_measure;
END_ENTITY; -- cartesian_point

ENTITY cc_design_approva
SUBTY PE OF (approval_assignment);
items: SET [1:7] OF approved_item;
END_ENTITY; -- cc_design_approva

ENTITY cc_design_certification
SUBTY PE OF (certification_assignment);
items: SET [1:7] OF certified_item;
END_ENTITY; -- cc_design_certification

ENTITY cc_design_contract
SUBTY PE OF (contract_assignment);
items: SET [1:7] OF contracted_item;
END_ENTITY; -- cc_design_contract

ENTITY cc_design_date and_time_assignment
SUBTYPE OF (date_and_time_assignment);
items: SET [1:7] OF date_time_item;
WHERE
wrl: cc_design_date time_correlation(SELF);
END_ENTITY;-- cc_design _date and_time assignment

ENTITY certification;
name :labe;
purpose : text;
kind : certification_type;
END_ENTITY; -- certification

ENTITY certification_assignment
ABSTRACT SUPERTYPE;
assigned_certification : certification;
END_ENTITY; -- certification_assignment

ENTITY certification_type;
description : label;
END_ENTITY; -- certification_type

ENTITY change
SUBTYPE OF (action_assignment);
items: SET [1:7] OF work_item;
END_ENTITY; -- change

ENTITY change_request
SUBTY PE OF (action_request_assignment);
items: SET [1:7] OF change_request_item;
END_ENTITY:; -- change_request

ENTITY chosen_action;
action : directed action;
END_ENTITY; -- chosen_action

ENTITY circle
SUBTY PE OF (conic);
radius : positive_length_measure;
END_ENTITY; -- circle
ENTITY closed_shell
SUBTY PE OF (connected_face set);
END_ENTITY; -- closed_shell

ENTITY configuration_design;

www.manharaa.com

configuration : configuration_item;
design : product_definition_formation;
UNIQUE
url: configuration, design;
END_ENTITY; -- configuration_design

ENTITY configuration_effectivity
SUBTY PE OF (product_definition_effectivity);
configuration : configuration_design;
UNIQUE
url : configuration, usage, id;
WHERE
wrl: (CONFIG_CONTROL_DESIGN.PRODUCT_DEFINITION_USAGE' INTYPEOK
SEL Fproduct_definition_effectivity.usage));
END_ENTITY; -- configuration_effectivity

ENTITY configuration_item;
id : identifier;
name : label;
description : OPTIONAL text;
item_concept : product_concept;
purpose : OPTIONAL label;

UNIQUE
url:id;
END_ENTITY; -- configuration_item
ENTITY conic
SUPERTY PEOF (ONEOF (circle,ellipse hyperbol a,parabol a))
SUBTYPE OF (curve);

position : axis2_placement;
END_ENTITY:; -- conic

ENTITY conical_surface
SUBTY PE OF (elementary_surface);
radius : length_measure;
semi_angle: plane_angle_mesasure;
WHERE
wrl: (radius >= 0);
END_ENTITY; -- conical_surface

ENTITY contract;
name :STRING;
purpose: STRING;
kind : contract_type;
END_ENTITY; -- contract

ENTITY contract_assignment
ABSTRACT SUPERTYPE;
assigned_contract : contract;
END_ENTITY:; -- contract_assignment

ENTITY contract_type;
description : STRING;
END_ENTITY; -- contract_type

ENTITY converson_based_unit
SUBTY PE OF (named_unit);
name : label;
conversion_factor : measure_with_unit;
END_ENTITY; -- conversion_based _unit

ENTITY coordinated_universal_time offset;
hour_offset : hour_in_day;
minute_offset : OPTIONAL minute_in_hour;
sense : ehead_or_behind;

END_ENTITY; -- coordinated_universa_time_offset

ENTITY curve
SUPERTY PEOF (ONEOF (line,conic,pcurve,surface_curve,offset_curve 3d,
curve replica))

www.manharaa.com

SUBTY PE OF (geometric_representation_item);
END_ENTITY; -- curve

ENTITY curve_bounded_surface
SUBTY PE OF (bounded_surface);
basis surface : surface;
boundaries : SET [1:7] OF boundary_curve;
implicit_outer : BOOLEAN;
END_ENTITY; -- curve_bounded surface

ENTITY date
SUPERTY PEOF (ONEOF (calendar_date,ordinal_date,
week_of_year_and_day_date));
year_component : year_number;
END_ENTITY; -- date

ENTITY date_and_time;
date_component : date;
time_component : local_time;

END_ENTITY; -- date_and_time

ENTITY date_and time assignment
ABSTRACT SUPERTYPE;
gned_date and_time : date_and_time;
role : date_time role;
END_ENTITY; -- date_and_time_assignment

ENTITY date time role;
name : label;
END_ENTITY; -- date_time role

ENTITY dated_effectivity
SUBTY PE OF (effectivity);
effectivity_start_date : date_and_time;
effectivity_end date : OPTIONAL date and time;
END_ENTITY; -- dated_effectivity

ENTITY degenerate pcurve
SUBTY PE OF (point);
basis surface : surface;
reference_to_curve : definitional_representation;
WHERE
wrl: (SIZEOF(reference_to_curvevrepresentation.items) = 1);
wr2: (CONFIG_CONTROL_DESIGN.CURVE' IN TY PEOF(reference_to_curve\
representation.itemg 1]));
wr3: (reference_to_curvelrepresentation.items[1]\
geometric_representation_item.dim = 2);
END_ENTITY; -- degenerate_pcurve

ENTITY directed_action
directive : action_directive;
END_ENTITY; - directed_adtion

ENTITY document;
id : identifier;
name : label;
description : text;
kind : document_type;
UNIQUE
url:id;
END_ENTITY; -- document

ENTITY document_reference
ABSTRACT SUPERTYPE;
assigned_document : document;
source : label;
END_ENTITY; -- document_reference

ENTITY document_relationship;
name - label;

67

www.manharaa.com

description : text;

relating_document : document;

related_document : document;
END_ENTITY; -- document_relationship

ENTITY document_type;
product_data_type: label;
END_ENTITY; -- document_type

ENTITY document_usage constraint;
source : document;
subject_element : labdl;
subject_element_vaue: text;
END_ENTITY; -- document_usage _constraint

ENTITY document_with_class
SUBTY PE OF (document);
class: identifier;
END_ENTITY; -- document_with_class

ENTITY edge
SUPERTY PEOF (ONEOF (edge_curve,orierted_edge))
SUBTY PE OF (topological_representation_item);
edge_start : vertex;
edge end : vertex;
END_ENTITY; -- edge

ENTITY effectivity
SUPERTY PEOF (ONEOF (serial_numbered_effectivity,dated _effectivity,
lot_effectivity));
id : identifier;
END_ENTITY; -- effectivity

ENTITY elementary_surface
SUPERTY PEOF (ONEOF (plane,cylindrical_surface,conical _surface,
spherical_surfacetoroidal_surface))
SUBTY PE OF (surface);
position : axis2_placement_3d;
END_ENTITY; -- elementary_surface

ENTITY dlipse;
semi_axis 1 : positive_plane_angle_measure;
semi_axis 2 : positive_plane_angle_measure;
END_ENTITY; -- elipse

ENTITY evauated_degenerate pcurve
SUBTY PE OF (degenerate_pcurve);
equivaent_point : cartesian_point;
END_ENTITY; -- evaluated_degenerate_pcurve

ENTITY executed_action
SUBTY PE OF (action);
END_ENTITY; -- executed_action

ENTITY face
SUPERTY PEOF (ONEOF (face_surface,oriented_face))
SUBTY PE OF (topological_representation_item);
bounds : SET [1:7] OF face_bound;
WHERE
wrl: (NOT mixed loop_type set(list to_set(list_face loops(SELF))));
wr2: (SIZEOFQUERY (temp <* bounds| (
'‘CONFIG_CONTROL_DESIGN.FACE _OUTER BOUND' IN TYPEORtemp))))
<=1);
END_ENTITY; -- face

ENTITY face_bound
SUBTY PE OF (topological_representation_item);
bound :loop;
orientation : BOOLEAN;
END_ENTITY:; -- face_bound

www.manharaa.com

ENTITY face _outer_bound
SUBTYPE OF (face_bound);
END_ENTITY; -- face_outer_bound

ENTITY face surface
SUBTY PE OF (face, geometric_representation_item);
face_geometry : surface;
same_sense : BOOLEAN;

END_ENTITY; -- faceted_brep_shape representation

ENTITY founded_item;
END_ENTITY; -- founded_item

ENTITY geometric_representation_context
SUBTY PE OF (representation_context);
coordinate_space _dimension : dimension_count;
END_ENTITY; -- geometric_representation_context
ENTITY geometric_representation_item
SUPERTY PEOF (ONEOF (point,direction,vector,placement,
cartesian_transformation_operator,curve,surface,edge _curve,
face surface,poly_loop,vertex_point,solid_model,
shell_based surface_model,shell_based_wireframe_model,
edge based wireframe_model ,geometric_set))
SUBTY PE OF (representation_item);
DERIVE
dim : dimension_count := dimension_of(SELF);
END_ENTITY;; -- geometric_representation_item

ENTITY geometric_set
SUPERTY PEOF (geometric_curve _set)
SUBTY PE OF (geometric_representation_item);
eements: SET [1:7] OF geometric_set_select;
END_ENTITY; -- geometric_set

ENTITY hyperbola
SUBTY PE OF (conic);
semi_axis : postive length_ measure;
semi_imag_axis : positive_length_measure;
END_ENTITY; -- hyperbola

ENTITY length_measure with_unit
SUBTY PE OF (measure_with_unit);
WHERE
wrl: (CONFIG_CONTROL_DESIGN.LENGTH_UNIT'INTY PEOHSELR
measure_with_unit.unit_component));
END_ENTITY; -- length_measure_with_unit

ENTITY line
SUBTY PE OF (curve);
pnt : cartesian_point;
dir : vector;
WHERE
wrl: (dir.dim = pnt.dim);
END_ENTITY;-- line

ENTITY loop
SUPERTY PEOF (ONEOF (vertex_loop,edge loop,poly_loop))
SUBTY PE OF (topological_representation_item);
END_ENTITY; -- loop

ENTITY lot_effectivity
SUBTY PE OF (effectivity);
effectivity_lot_id : identifier;
effectivity_lot_size: measure_with_unit;
END_ENTITY:; -- lot_effectivity

www.manharaa.com

ENTITY mass _measure_with_unit
SUBTY PE OF (measure_with_unit);
WHERE
wrl: (CONFIG_CONTROL_DESIGN.MASS_UNIT'IN TYPEOF(SELF\
measure_with_unit.unit_component));
END_ENTITY; -- mass measure_with_unit

ENTITY measure_with_unit;
vaue_component : measure_value;
unit_component : unit;

WHERE
wrl: valid_units(SELF);
END_ENTITY; -- measure with_unit

ENTITY next_assembly_usage occurrence
SUBTY PE OF (assembly_component_usage);
END_ENTITY; -- next_assembly_usage occurrence

ENTITY organization;
id :OPTIONAL idertifier;
name : label;

description : text;
END_ENTITY:; -- organization

ENTITY parabola
SUBTY PE OF (conic);
focal_dist : length_measure;
WHERE
wrl: (focal_dist <> 0);
END_ENTITY; -- parabola

ENTITY parametric_representation_context
SUBTY PE OF (representation_context);
END_ENTITY; -- parametric_representation_context

ENTITY path
SUPERTY PEOF (ONEOF (edge_|oop,oriented_path))
SUBTY PE OF (topological_representation_item);
edge list : LIST [1:7] OF UNIQUE oriented_edge;
WHERE
wrl: path_head to_tail(SELF);
END_ENTITY; -- path

ENTITY pcurve
SUBTY PE OF (curve);
basis surface : surface;
reference_to_curve : definitional _representation;
WHERE
wrl: (SIZEOF(reference _to_curverepresentation.items) = 1);
wr2: (CONFIG_CONTROL_DESIGN.CURVE' IN TY PEOF(reference_to_curve\
representation.items1]));
wr3: (reference_to_curve\representation.itemg[1]\
geometric_representation_item.dim = 2);
END_ENTITY; -- pcurve

ENTITY person;
id : identifier;
last_name : OPTIONAL label;
first_name : OPTIONAL labdl;
middle_names : OPTIONAL LIST [1:7] OF label;
prefix_titles: OPTIONAL LIST [1:7] OF label;
suffix_titles: OPTIONAL LIST [1:7] OF label;
UNIQUE
url:id;
WHERE
wrl: (EXISTSlast_name) OR EXISTSfirst_name));
END_ENTITY; -- person

ENTITY person_and_organization;

70

www.manharaa.com

the person : person;
the_organization : organization;
END_ENTITY; -- person_and_organization

ENTITY person_and_organization_assignment
ABSTRACT SUPERTYPE;
assigned_person_and_organization : person_and_organization;
role : person_and_organization role;
END_ENTITY; -- person_and_organization_assignment

ENTITY person_and_organization role;
name : label;
END_ENTITY; -- person_and_organization _role

ENTITY personal_address
SUBTY PE OF (address);
people : SET [1:7] OF person;
description : text;
END_ENTITY; -- personal_address

ENTITY placement
SUPERTY PEOF (ONEOF (axisl_placement,axis2_placement_2d,
ais2_placement_3d))
SUBTY PE OF (geometric_representation_item);
location : cartesian_point;
END_ENTITY; -- placement

ENTITY plane
SUBTY PE OF (elementary_surface);
END_ENTITY; -- plane

ENTITY plane_angle_measure with_unit
SUBTY PE OF (measure_with_unit);
WHERE
wrl: (CONFIG_CONTROL_DESIGN.PLANE_ANGLE UNIT'IN TYPEORSELF\
measure_with_unit.unit_component));
END_ENTITY:; -- plane_angle_measure_with_unit

ENTITY point
SUPERTY PEOF (ONEOF (cartesian_point,point_on_curve,point_on_surface,
point_replica,degenerate_pcurve))
SUBTY PE OF (geometric_representation_item);
END_ENTITY; -- point

ENTITY point_on_curve
SUBTY PE OF (point);
basis curve :curve
point_parameter : parameter_value;
END_ENTITY; -- point_on_curve

ENTITY product;
id : STRING;
name . STRING;

description : STRING;
frame_of _reference: SET [1:7] OF product_context;
UNIQUE
url:id;
END_ENTITY; -- product

ENTITY product_category;

name : STRING;

description : OPTIONAL STRING,;
END_ENTITY; -- product_category

ENTITY product_category_relationship;

name : label;

description : text;

category : product_category;

sub_category : product_category;
WHERE

71

www.manharaa.com

wrl: acyclic_product_category_relationship(SELF,[SELF.sub_category]);
END_ENTITY; -- product_category_relationship

ENTITY product_concept;

id : STRING,

name : STRING;

description : STRING;

market_context : product_concept_context;
UNIQUE

url:id;

END_ENTITY; -- product_concept

ENTITY product_concept_context;
market_segment_type: STRING;
END_ENTITY;; -- product_concept_context

ENTITY product_context
SUBTY PE OF (gpplication_context_element);
discipline_type: label;
END_ENTITY; -- product_context

ENTITY product_definition;

id : identifier;
description s text;
formation : product_definition_formation;

frame_of_reference : product_definition_context;
END_ENTITY; -- product_definition

ENTITY product_definition_context
SUBTY PE OF (application_context_element);
life_cycle stage : label;
END_ENTITY; -- product_definition_context

ENTITY product_definition_effectivity
SUBTY PE OF (effectivity);
usage : product_definition_relationship;
UNIQUE
url : usage, id;
END_ENTITY; -- product_definition_effedivity

ENTITY product_definition_formation;
id : STRING;
description : SRING;
END_ENTITY; -- product_definition_formation

ENTITY product_definition_relationship;

id : identifier;
name : labdl;
description : text;

relating_product_definition : product_definition;
related_product_definition : product_definition;
END_ENTITY; -- product_definition_relationship

ENTITY product_definition_shape
SUBTY PE OF (property_definition);
UNIQUE
url: definition;
WHERE
wrl: NOT ('CONFIG_CONTROL_DESIGN.SHAPE_DEFINITION'IN TY PEORSELR
property_definition.definition)));
END_ENTITY; -- product_definition_shape

ENTITY product_definition_usage
SUPERTY PEOF (assembly_component_usage)
SUBTY PE OF (product_definition_relationship);
UNIQUE
url: id, relating_product_definition, related_product_definition;
WHERE
wrl: acyclic_product_definition_relationship(SELF,[SELR

72

www.manharaa.com

product_definition_relationship.related _product_definition],
'CONFIG_CONTROL_DESIGN.PRODUCT_DEFINITION_USAGE);
END_ENTITY; -- product_definition_usage

ENTITY product_related_product_category;

the_product: product;
END_ENTITY; -- product_related product_category

ENTITY property_definition;

name : label;

description : text;

definition : characterized_definition;
END_ENTITY; -- property_definition

ENTITY property_definition_representation;
definition : property_definition;
used_representation : representation;

END_ENTITY; -- property_definition_representation

ENTITY representation;
name : label;
items : ST [1:7] OF representation_item;
context_of_items : representation_context;
END_ENTITY; -- representation

ENTITY representation_context;
context_identifier : identifier;
context_type :text;
INVERSE
representations _in_context : SET [1:7] OF representation FOR
context_of_items;
END_ENTITY; -- representation_context

ENTITY representation_item;
name : label;
WHERE
wrl: (SIZEOF(using_representations(SELF)) > 0);
END_ENTITY:; -- representation_item

ENTITY security_classification_level;
name : label;
END_ENTITY; -- security_classification_level

ENTITY seria_numbered_effectivity
SUBTY PE OF (effectivity);
effectivity_start_id : identifier;
effectivity_end_id : OPTIONAL identifier;
END_ENTITY; -- serial_numbered_effectivity

ENTITY shape_aspect;

name : label;
description : text;
of_shape : product_definition_shape;

product_definitiona : LOGICAL;
END_ENTITY:; -- shape_aspect

ENTITY shape_definition_representation
SUBTY PE OF (property_definition_representation);
END_ENTITY; -- shape_definition_representation

ENTITY shape_representation
SUBTY PE OF (representation);
END_ENTITY; -- shape_representation

ENTITY shape representation_relationship
SUBTY PE OF (representation_relationship);
WHERE
wrl: (CONFIG_CONTROL_DESIGN.SHAPE_REPRESENTATION' IN (TYPEORSELR
representation_relationship.rep_1) + TYPEOF(SELF\

73

www.manharaa.com

representation_relationship.rep_2)));
END_ENTITY; -- shape representation_relationship

ENTITY s_unit
SUBTY PE OF (named_unit);
prefix : OPTIONAL si_prefix;
name :s_unit_name;
DERIVE
SEL F\named_unit.dimensions : dimensiona_exponents :=
dimensions_for_si_unit(SELF.name);
END_ENTITY; -- s_unit

ENTITY solid_angle_measure with_unit
SUBTY PE OF (measure_with_unit);
WHERE
wrl: (CONFIG_CONTROL_DESIGN.SOLID_ANGLE_UNIT'IN TYPEOHSELR
measure_with_unit.unit_component));
END_ENTITY; -- solid_angle measure with_unit

ENTITY solid_model
SUPERTY PEOF (manifold_solid_brep)
SUBTY PE OF (geometric_representetion_item);
END_ENTITY; -- solid_model

ENTITY specified_higher_usage occurrence
SUBTY PE OF (assembly_component_usage);
upper_usage : assembly_component_usage;
next_usage : next_assembly_usage occurrence;
UNIQUE
url : upper_usage, next_usage;
END_ENTITY; -- specified_higher_usage occurrence

ENTITY spherica_surface
SUBTY PE OF (elementary_surface);
radius : positive_length_measure;
END_ENTITY; -- spherica_surface

ENTITY start_request
SUBTY PE OF (action_request_assignment);
items: SET [1:7] OF start_request_item;
END_ENTITY; -- start_request

ENTITY gart work
SUBTY PE OF (action_assignment);
items: SET [1:7] OF work_item;
END_ENTITY; -- start_work

ENTITY supplied_part_relaionship;
END_ENTITY; -- supplied_part_relationship

ENTITY surface
SUPERTY PEOF (ONEOF (elementary_surface,swept_surface,bounded_surface,
offset_surface,surface replica))
SUBTY PE OF (geometric_representation_item);
END_ENTITY; -- surface

ENTITY surface replica
SUBTY PE OF (surface);
parent_surface : surface;
transformation : cartesian_transformation_operator_3d;
WHERE
wrl: acyclic_surface replica(SELF,parent_surface);
END_ENTITY; -- surface replica

ENTITY topological_representation_item
SUPERTY PEOF (ONEOF (vertex,edge,face_bound,face,vertex_shell,

74

www.manharaa.com

wire_shell,connected_edge_set,connected_face set,loop ANDOR path))
SUBTY PE OF (representation_item);
END_ENTITY; -- topological _representation_item

ENTITY toroida_surface
SUBTY PE OF (elementary_surface);
major_radius: positive_|length_measure;
minor_radius : positive_length_measure;
END_ENTITY; -- toroidal_surface

ENTITY uniform_curve
SUBTYPE OF (b_spline_curve);
END_ENTITY; -- uniform_curve

ENTITY uniform_surface
SUBTY PE OF (b_spline_surface);
END_ENTITY; -- uniform_surface

ENTITY valid_reference_source;
source: approved_source of _reference;
END_ENTITY; -- uniform_surface

ENTITY vector
SUBT Y PE OF (geometric_representation_item);
orientation : direction;
magnitude : length_measure;
WHERE
wrl: (magnitude >= 0);
END_ENTITY; -- vector

ENTITY versioned_action_request;
id : STRNG;
version : STRNG;
END_ENTITY; -- versioned_action request

ENTITY vertex
SUBTY PE OF (topological_representation_item);
END_ENTITY; -- vertex

ENTITY vertex_loop
SUBTY PE OF (loop);
loop_vertex : vertex;
END_ENTITY; -- vertex_loop

ENTITY vertex_point
SUBTY PE OF (vertex, geometric_representation_item);
vertex_geometry : point;

END_ENTITY; -- vertex_point

END_SCHEMA; -- config_control_design

75

www.manharaa.com

APPENDIX B

ANALY SIS OF SCHEMA AP 203 (ENTITY TYPES)

This Appendix provides the result of the analysis of schemain Appendix A. In this
Appendix, the analysis of Entity types and Inheritance is presented. In the table below, the first
and second columns tell if the entity is a supertype or subtype respectively. The third column,
Root tells whether or not the entity is a root supertype. Num Sub and Num Super give the number
of subtypes and supertypes respectively for that entity. Max DIT is the longest path from the
entity to its subtypes. Max Super_Path is longest path from the entity to its supertypes. Max
DAC_Path is the longest path (for attributes in this in the entity) from an attribute to its

underlying type.
super [sub Num |[Num [Max [Max Max

Entity type? [type? [Root?[Sub [Super IDIT [Super_Path |[DAC_Path
action Y N Y 1 0 1 0 1
action_assigment Y N Y 1 0 1 0 0
action_directive N N N/A 0 0 0 (0 1
action_method N N N/A 0 0 0 0 0
action_request_assignment Y N Y 2 0 0 0 1
action_request_solution N N N/A 0 0 0 0 1
action_request_status N N N/A 0 0 0 0 1]
action_status N N N/A 0 0 0 (0 1
address Y N Y 1 0 1 0 1
advanced_face N Y N/A 0 1 0 4 0
alternate_product_relationship N N N/A 0 0 0 0 2
application_context N N N/A 0 0 0 (0 3
application_context element Y N Y 3 0 1 0 2]
application_protocol_definition N N N/A 0 0 0 0 3
approval N N N/A 0 0 0 0 2
approval_assignment Y N Y 1 0 1 0 3
approval_date_time N N N/A 0 0 0 (0 3
approval_level N N N/A 0 0 0 (0 0
approval_person_organization N N N/A 0 0 0 0 3
approval_relationship N N N/A 0 0 0 0 3
approval_role N N N/A 0 0 0 0 1
approval_status N N N/A 0 0 0 0 1
area_measure_with_unit N Y N/A 0 1 0 1 0
area_unit N Y N/A 0 1 0 1 0
assembly component _usage Y Y N 3 1 1 2 1
assembly _component_usage_substitute N N N/A 0 0 0 0 2
b_spline_curve with_knots N Y N/A 1 0 0 1 1

www.manaraa.com

super [sub Num |[Num [Max [MAX Max
Entity type? [type? |root? |[Sub [Super IDIT |Super Path |[DAC Path
bounded_curve Y Y N 5 1 1 3 0
bounded_pcurve N Y N/A 0 2 0 4 0
bounded_surface Y Y N 4 1 1 3 0
calendar_date N Y N/A Q 1 0 1 1
cartesian_point N Y N/A Q 1 0 3 1
cc_design_approval N Y N/A 0 1 0 1 il
cc_design_certification N Y N/A 0 1 0 1 1
cc_design_contract N Y N/A 0 1 0 1 1
cc_design_date and_time_ assignment(N Y N/A Q 1 0 1 1
certification N N N/A 0 0 0 0 2
certification_assignment Y N Y 1 0 2 0 3
certification_type N N N/A 0 0 0 0 il
change N Y N/A 0 1 0 1 1
change_request N Y N/A Q 1 0 1 1
chosen_action N N N/A 0 0 0 0 3
circle N Y N/A 0 1 0 3 2
closed_shell N Y N/A 0 1 0 1 0
configuration_design N N N/A Q 0 0 0 3
configuration_effectivity N Y N/A Q 1 0 2 4
configuration_item N N N/A 0 0 0 0 2
conic Y Y N 4 1 1 2 2
conical_surface N Y N/A 0 1 0 4 0
contract N N N/A Qg 0 0 0 1
contract_assignment Y N Y 1 0 3 0 1
contract_type N N N/A 0 0 0 0 1
conversion_based_unit N Y N/A 0 1 0 1 1
coordinated_universal_time offset N N N/A 0 0 0 0 1
curve Y Y N 5 1 1 2 0
curve_bounded_surface N Y N/A 0 1 0 0 3
date Y N Y 3 0 1 0 il
date_and_time N N N 0 0 0 0 2
date_and_time_assignment Y N Y 1 0 0 0 3
date time role N N N/A Q 0 0 0 1
dated_effectivity N Y N/A 0 1 0 1 3
degenerate_pcurve N Y N/A 0 1 0 3 2
directed_action N N N/A 0 0 0 0 il
document N N N/A Qg 0 0 0 1
document_reference N N N/A Q 0 0 0 2
document_relationship N N N/A 0 0 0 0 2
document_type N N N/A 0 0 0 0 il
document_usage_constraint N N N/A 0 0 0 0 3
document_with_class N Y N/A Q 1 0 1 il
edge Y Y N 2 1 1 2 2
effectivity Y N Y 3 0 1 0 1
elementary surface Y Y N 5 1 1 3 il
ellipse N N N/A 0 0 0 0 1

www.manaraa.com

super |sub Num [Num [Max |MAX Max
Entity type? [type? [root? |Sub |Super DIT [Super_Path |DAC Path
evaluated degenerate pcurve N Y N/A 0 1 0 4 3
executed_action N Y N/A 0 1 0 1 0
face Y Y N 2 1 1 2 2
face bound N Y N/A 0 1] 0 2 1]
face_outer_bound N Y N/A (0 1 0 3 0
face_surface N Y N/A 0 1 0 3 3
founded_item N N N/A 0 0 0 0 0
geometric_representation_context N Y N/A 0 1 0 1 1
geometric_representation_item Y Y N 15 1 3 1 1
geometric_set Y Y N 1 1 1 1 1
hyperbola N Y N/A 0 1 0 3 2
length_measure_with_unit N Y N/A 0 1 0 1 3
line N Y N/A 0 1 0 3 3
loop Y Y N 3 1 1 2 0
lot_effectivity N Y N/A (0 1 0 1 2
mass_measure_with_unit N Y N/A 0 1 0 1 0
measure_with_unit N N N/A 0 0 0 0 1
next_assembly usage_occurrence [N Y N/A (0 1 0 3 0
organization N N N/A 0 0 0 0 1
parabola N Y N/A (0 1 0 3 1
parametric_representation_context |N Y N/A 0 1 0 1 0
path Y Y N 2 1 1 2 1
pcurve N Y N/A (0 1 0 3 1
person N N N 0 0 0 0 1
person_and_organization N N N 0 0 0 0 2
person_and_organization_assignment|N N N/A 0 0 0 0 3
person_and_organization_role N N N/A 0 0 0 0 1
personal_address N Y N/A 0 1 0 1 2
placement Y Y N 2 1 1 1 3
plane N Y N/A 0 1 0 4 0
plane_angle _measure_with_unit N Y N/A 0 1 0 1 0
point Y Y N 1 5 1 2 0
point_on_curve N Y N/A (0 1 0 3 3
product N N N/A 0 0 0 0 2]
product_category N N N/A 0 0 0 0 0
product_category_relationship N N N/A 0 0 0 0 1
product_concept N N N/A 0 0 0 0 0
product_concept_context N N N/A (0 0 0 0 1
product_context N Y N/A (0 1 0 1 0
product_definition N N N/A 0 0 0 0 1
product_definition_context N Y N/A 0 1 0 1 1
product_definition_effectivity N Y N/A (0 1 0 1 1
product_definition_formation N N N/A 0 0 0 0 0
product_definition_relationship N N N/A (0 0 0 0 1
product_definition_shape N Y N/A 0 1 0 1 0
78

www.manaraa.com

super [|sub Num |[Num [Max [MAX Max
Entity type? [ype? [root?[Sub [Super IDIT [Super_Path [DAC Path
product_definition_usage Y Y N/A il 1 2 1 0
product_related_product_category |N N N/A 0 0 0 0 2
product_definition N N N/A 0 0 0 0 1
product_definition_representation |N N N/A 0 0 0 0 2
representation N N N/A 0 0 0 0 2
representation_context N N N/A 0 0 0 0 2
representation_item N N N/A 0 0 0 0 1
security_classification_level N N N/A 0 0 0 0 1
serial_numbered_effectivity N Y N/A 0 1 0 1 1
shape aspect N N N/A 0 0 0 0 1
shape_definition_representation N Y N/A 0 1 0 1 0
shape_representation N Y N/A (0 1 0 1 0
shape representation_relationship [N Y N/A 0 1] 0 2 0
si_unit N Y N/A Qg 1 0 1 0
solid_angle_measure_with_unit N Y N/A 0 1 0 1 0
solid_model Y Y N 1 1 1 1 0
specified_higher_usage_occurrence|N Y N/A (0 1 0 3 2
spherical_surface N Y N/A 0 1 0 4 2
start_request N Y N/A 0 1 0 1 0
start_work N Y N/A 0 1 0 1 0
supplied_part_relationship N N N/A 0 0 0 0 0
surface Y Y N 5 1 2 2 0
surface_replica N Y N/A 0 1 0 3 2
topological_representation_item Y Y N 10 1 3 1 0
toroidal_surface N Y N/A 0 1 0 4 2
uniform_curve N Y N/A 0 1 0 1 0
uniform_surface N Y N/A 0 1 0 4 0
\valid_reference source N N N/A 0 0 0 0 1
\vector N Y N/A 0 1 0 2 0
\versioned_action_request N N N/A 0 0 0 0 1
\vertex N Y N/A 0 1 0 2 0
\vertext_loop N Y N/A 0 1 0 3 2
\vertext_point N Y N/A 0 1 0 2 0
79

www.manaraa.com

APPENDIX C

ANALY SIS OF SCHEMA AP 203 (ATTRIBUTE TYPES)

This Appendix provides the result of the analysis of the Attributes of the Entities of the
schemain Appendix A. The table shows an entity and its attributes in the first column, and the
underlying type in the second column. The third column assigns a code that describes the
underlying type of the attribute. DAC_PATH again shows, for each attribute, the longest path
from that attribute to its underlying type.

Underlying
type (E =
Enum, R =
Restricted
types, S =
Select
Types, B =
Base type, T
Entity /Attributes Underlying Type Name = Entity) |DAC_Path
action
name| STRINGB 0
description STRING|B 0
chosen_method action_methodT 1
action_assigment
assigned_action action[E 0
action_directive
name STRING|B 0
request versioned_action_requestT 1
action_method
name| STRINGB 0
descritpion STRINGB 0
consequence STRING|B 0
purpose STRING|B 0
action_request_assignment
assigned_action_request| versioned_action_requestT 1
action_request_solution
method action_methodT 1
request versioned_action_requestT 1
action_request_status
status labelR 1
assigned_request versioned_action_request[T 1
action_status
status labelR 1
assigned_action executed_action|T 1

www.manaraa.com

Underlying
type (E =
Enum, R =
Restricted
types, S =
Select
Types, B =
Base type, T
Entity /Attributes Underlying Type Name = Entity) [DAC_Path
address
internal_location labelR 1
street_numbe IabeI|R 1
street IabeI|R 1
postal_box labelR 1
town label 1
region labelR 1
postal_code IabeI|R 1
country IabeI|R 1
facsmile_numbe] IabeI|R 1
telephone_number labelR 1
electronic_mail_address labelR 1
telex_numbe] labelR 1
advanced_face
alternate_product_relationship
name labelR 1
definition textR 1
alternate productT 2
base product]T 2
basis textR 1
application_context
application] textT 3
application_context_element
name labelR 1
frame_of reference application_contextT 2
application_protocol_definition
status labelR 1
application_interpreted_model_schema_name IabeI|R 1
application_protocol_yeatr year_numberIR 1
applicatior] aplication_contextT 3
approval
status approval_status|T 2
level STRING|B 0
approval _assignment
assigned_approval approval_status|T 3
approval_date_time
date time date time_select S 1
dated_aproval approval T 3
approval_level
level STRINGB 0

81

www.manaraa.com

Underlying

type (E =
Enum, R =
Restricted
types, S =
Select
Types, B =
Base type, T
Entity /Attributes Underlying Type Name = Entity) [DAC_Path
approval_person_organization
person_organization person_organization_select|T 1
authorized_approval approvalT 3
role approval_roleT 2
approval relationship
name STRING|B 0
description STRING|B 0
relating_approval approvalT 3
related_approval approvalT 3
approval_role
role labelR 1
approval_status
name labelR 1
area_measure with unit N/A
area_unit N/A
assembly_component_usage
reference_designator identifier R 1
assembly _component_usage_substitute
name, labelR 1
definition textR 1
basg assembly_component_usageT 2
substitutg assembly_component_usageT 2
b _spline curve with _knots
knot_multiplicities INTEGERB 0
knots| pamater_value|R 1
knot_spec knot_type[T 1
bounded_curve
bounded_pcurve N/A
bounded surface N/A
calendar_date N/A
day_component day_in_month_numberR 1
month_component month_in_year numberR 1
cartesian_point
coordinates length_measureR 1
cc_design_approval
items| approved_item|S 1
cc_design_certification
items certified_item|S 1

82

www.manaraa.com

Underlying
type (E =
Enum, R =
Restricted
types, S =
Select
Types, B =
Base type, T
Entity /Attributes Underlying Type Name = Entity) [DAC_Path
cc_design_contract
itemsgcontract_item S 1
cc_design_date_and_time_assignment
itemg date_time_item|T 1
Certification
name labelR 1
purpose textR 1
kind certification_type(T 2
certification_assignment
assigned_certification certification|T 3
certification_type
description labelR 1
change
items work_item(T 1
change_request
items change_request_itemT 1
chosen_action
action directed_action|T 3
circle
readius positive_length measurelR 2
closed_shell N/A
configuration_design
configuration configuration_item|T 3
design product_defintition_formation|T 1
configuration_effectivity
configuration configuration_design|T 4
configuration_item
id identifier|R 1
name labelR 1
descriptior textR 1
item_concept] product_concept|T 2
purpose labelR 1
conic
position axis2_placement|T 2
conical_surface
radius length_measureB 0
semi_angle plane_angle_measure|B 0

www.manaraa.com

Underlying
type (E =
Enum, R =
Restricted
types, S =
Select
Types, B =
Base type, T
Entity /Attributes Underlying Type Name = Entity) [DAC_Path
contract
name| STRINGB 0
purpose STRING|B 0
kind contract_type|T 1
contract_assignment
assigned_contract contract[T 1
contract_type
description STRING|B 0
conversion_based_unit
name, labelR 1
conversion_factor, measure_with_unit[T 1
coordinated_universal_time_offset
hour_offset hour_in_day[R 1
minute_offset minute in_day|R 1]
sense ahead_or_behindE 1
curve N/A
curve bounded surface
basis_surface surfaceT 3
boundaries boundary_curve|T 1
implicit_outer BOOLEANB 0
date
year_component year_numbeiR 1
date_and_time
date_component datelT 2
time_component local_time[T 1
date_and_time assignment
assigned_date_abd_time date_and_time[T 3
role date_time_role[T 3
date time role 1]
name, labelR 1
dated_effectivity
effective_start_date date and_time[T 3
effective_end_date date_and_time[T 3
degenerate_pcurve
basis surfaceT 2
reference_to_curve defintional_representationT 1
directed action

www.manaraa.com

Underlying
type (E =
Enum, R =
Restricted
types, S =
Select
Types, B =
Base type, T
Entity /Attributes Underlying Type Name = Entity) [DAC_Path
directive action_directive[T 1
document
id identifierR 1
name| labelR 1
description textR 1
kind document_type(T 1
document_reference
assigned_document document|T 2
source labelR 1
document_relationship
name labelR jl
description textR 1
relating_document document(T 2
related_document document|T 2
document_type
product_data_type label 1
document_usage_constraint
source document|T 2
subject_element labelR 1
subject_element_value| textR 1
document_with_class
class identifierR 1
edge
edge_start vertextT 1
edge_end vertextT 1
effectivity
id identifierR 1
elementary surface
position axis2_placement_3d[T 1
ellipse
semi_axis_1| positive_plane_angle measureT 1
semi_axis_2| positive_plane_angle_measureT 1
evaluated_degenerate_pcurve
equivalent_point cartesian_point|T 1
executed_action N/A

www.manaraa.com

Underlying
type (E =
Enum, R =
Restricted
types, S =
Select
Types, B =
Base type, T
Entity /Attributes Underlying Type Name = Entity) [DAC_Path
Face
bounds face boundT 1
Face_bound
bound loop|T 1
orientation BOOLEANB 0
Face_outer_bound N/A
Face_surface
Face goemetry surface T 1
founded_item N/A
geometric_representation_context
coordinate space_dimension dimension_count|T 1
geometric_representation_item
dim dimension_count|T 1
geometric_set
elements geometric_set_selectT 1
hyperbola
semi_axis positive length measurelR 2
semi_imag_axis positive_length_measurelR 2
length_measure_with_unit N/A
Line
pnt cartesian_point[T 1
dir vector|T 1
Loop N/A
lot_effectivity
effectivity_lot_id identifienR 1
effectivity lot_size measure_with_unit[T 2
mass_measure_with_unit N/A
measure_with_unit
value _component measure_valueR 1
unit_component unit T 1
Next_assembly_usage_occurrence N/A
organization
id identifierR 1
name, labelR 1
description textlR 1
parabola
focal_dist length_measuregR 1

www.manaraa.com

Underlying
type (E =
Enum, R =
Restricted
types, S =
Select
Types, B =
Base type, T
Entity /Attributes Underlying Type Name = Entity) [DAC_Path
parametric_representation_context
path N/A
edge_list orientation_edgeT 1
pcurve
basis_surface surfaceT 1
reference_to_curve| definitional_representationT
person
id identifieR 1
last_name labelR 1
first_ name labelR 1
middle_name labelR 1
prefix_titles labelR 1
suffix_titles labelR 1
person_and_organization
the_person| personT 2
the_organization organizationT 2
person_and_organization_assignment
assigned_person_and_organization person_and_organizatior|T 3
role person_organization_roleT 2
person_and_organization_role
name labelR 1
personal_address
people personT 2
description text{R 1
placement
location cartesian_pointT 1
plane N/A
plane_angle _measure with_unit N/A
point N/A
point_on_curve
basis_curve curveT 1
point_parameter parameter_valueR 1
product
id STRINGB 0
name| STRINGB 0
description STRINGB 0
frame_of reference product_contex{T 2
87

www.manaraa.com

Underlying
type (E =
Enum, R =
Restricted
types, S =
Select
Types, B =
Base type, T
Entity /Attributes Underlying Type Name = Entity) [DAC_Path
product_category
name STRING|B 0
descriptior STRINGB 0
product_category_ relationship
name labelR 1
descriptior textR 1
category product_category|T 1
sub_category| product_category|T 1
product_concept
id identifier|B 0
name labelB Qg
descriptior textB 0
market_context product_concept_context[T 1
product_concept_context
market_segment_type STRING|B 0
product_context
descipline_type labelR 1
product_definition
id identifienR jl
descriptior textR 1
formatiori product_definition_formation|T 1
frame_of reference product_definition_context[T 1
product_definition_context
life_cycle_stags labelR 1
product_definition_effectivity
usage product_definition_usage[T 1
product_definition_formation
idSTRING B Qg
descriptiorlSTRING B 0
product_definition_relationship
id identifierR 1
name labelR 1
descriptior textR 1
relating_product_definition product_definition|T Q

www.manaraa.com

Underlying
type (E =
Enum, R =
Restricted
types, S =
Select
Types, B =
Base type, T
Entity /Attributes Underlying Type Name = Entity) [DAC_Path
related_product_definition product_definition[T 2
product_definition_shape N/A
product_definition_usage N/A
product_related_product_category
the_product productT 2
product_definition
name labelR 1
description textlR 1
definition characterized_definitionT 1
product_definition_representation
definition property definitionT 1
used_representatior] representation(T 2
representation
name labelR 1]
items representation_item(T 1
context_of _items representation_context|T 2
representation_context
context_identifie identifierR 1
context_type textR 1
representation_in_context representation|T 2
representation_item
name labelR 1
security classification_level
name labelR 1
serial_numbered_effectivity
effectivity _start_datg identifierR 1
effectivity_end_date identifienR 1
shape_aspect
name labelR 1]
descriptior textR 1
of_shape product_definition_shape[T 1
product_definitiona LOGICALB 0
shape_definition_representation N/A
shape_representation N/A
shape _representation_relationship N/A
si_unit
prefix si_prefix|e 0

89

www.manaraa.com

Underlying
type (E =
Enum, R =
Restricted
types, S =
Select
Types, B =
Base type, T
Entity /Attributes Underlying Type Name = Entity) |DAC_Path
name Si_unit_namelE 0
solid_angle measure with_unit
solid_model
specified_higher_usage_occurrence
upper_usage assembly component usageT 2
next_usage| next_assembly usage_occurrenceT 1
spherical_surface
raduis positive_length_measure|R 2
start_request
items start_request_item(T 1
start_ work
items| work_item[T 1
supplied_part_relationship
surface N/A
surface_replica N/A
parent_surface surfaceT 2
transformation|cartesian_transformation_operator_3d[T 1
topological_representation_item
toroidal_surface
major_radius positive_length measure|R 2
minor_radius positive_length_measure|R 2
uniform_curve N/A
uniform_surface N/A
\valid_reference_source
source approved_source_of_referenceS 1
\vector
orientation direction|E 0
magnitude length_measureR 1
\versioned action_request
id STRING|B 0
version STRING|B 0
vertex
vertext_loop vertex 1
\vertext_point
vertex_geometry point[T 2

www.manaraa.com

APPENDIX D

ANALY SIS OF SCHEMA AP 203 (SELECT TYPEYS)
This Appendix provides the result of the analysis of the Select types of schemain

Appendix A. The first column shows, for each Select type, the number of Select list items, the

second column shows the type composition of the Select list. For instance, if the Select type

contains entities in the Select list, then the code T is assigned. The last column shows how many

times that type has been redefined.

Composition (E = Enum, R =
Restricted types, S = Select [Maximum Level of
Number of Select list items Types, T = Entities, M = Mixed) |definition
3 T 1
11 T 1
2 S 2
2 E 1
1 T 2
1 T 1
2 T 1
1 T 2
1 T 1
3 T 2
9 T 1
3 T 1
2 T 1
2 T 1
1 S 2
3 T 3
1 S 2
12 R 1
2 T 2
3 T 1
1 T 1
3 T 1
2 T 1
1 T 1
3 T 1
1 T 1
2 T 1
1 T 1
2 T 1
1 T 1
2 T 1

91

www.manaraa.com

APPENDIX E

ANALY SIS OF SCHEMA AP 203 (RESTRICTED TYPES)
This Apperdix provides the result of the analysis of the Restricted types of the schemain
Appendix A. The columns show the type name, the underlying type and the longest path to the
underlying type (Max DAC)

Underlying type (E =
Enum, R = Restricted
types, S = Select
Types, B = Base type,
T = Entity) Max DAC

o

Type Name

area_measure

context_dependent_measure
context_dependent_measure

count_measure

day_in_month_number
day_in_week_number

day_in_year_number

descriptive_measure

dimension_count

hour_in_day

identifier

label

length_measure

list_of reversible_topology_item

mass_measure

minute_in_hour

month_in_year number

parameter_value

plane_angle_measure

positive_length_measure
positive_plane_angle_measure

second_in_minute

set_of reversible_topology_item

solid_angle_measure

text

lvolume_measure

week_in_year_number

DWW W |W[(A|(0|(OD|O|W|W|0|(O|W|—|0|0(0|00|0 || |O|(0|[0|W ||
o|lo|lo|o|r|O|O|rRr |k |O|O|O|O|O |k |O|O|O|JO|O|O|O|O|O|O|O|O|OC

lyear_number

92

www.manaraa.com

APPENDIX F

SURVEY

This Appendix presents the survey instrument that was used to obtain information about
the reuse of EXPRESS modules. The survey was given to undergraduate students with one
semester training in EXPRESS. The survey required participants to reuse existing EXPRESS
modules in the schema provided in Appendix A to rebuild new schemas. In the survey,
participants are asked to locate and copy types, including al the other type mentioned in its
definition, into a new schema. The times (in minutes) taken for finding a type and copying it
(including its dependents) were recorded for different levels of coupling. The analysis of the

survey is given in Appendix G.

Survey Instructions

A: How to answer the questions

1. Typeadl your answersin onetext file using atext editor like Notepad, Wordpad, Word, etc, and save thefile
under the name YourName_SurveyResults.txt.

2. Thetext file containing your answers should have your name, your class and section at the top of the first page.

3. The number of the question being answered must precede each answer.

4. The completed survey must be turned in no later than December 12

B: Searching for itemsin a schemas

Print out the schemas provided Appendix A, B, C, D, and E. All searching must be done manually using a printed
version of the schemas provided in Appendix A, B, C, D, and E. Results that show signs of electronic searching, will
receive no grade for the survey.

C: Recoding the time taken for each question

1. Timetaken in answering each question must be recorded in an EXCEL worksheet.
2. The EXCEL worksheet must have your name and class at the top of the first page.
3. Each recorded time must have the question number next to it.
4. Name the EXCEL worksheet as YourName_SurveyTime.xls
5. Your EXCEL worksheet should be formatted as shown below:

D: Submission of results
The file containing your answers and the one contai ning the times must both be sent to me by email zkot2@etsu.edu

E: Grades Assignment

93

www.manaraa.com

In order to receive afull 50-point grade, you must answer all questions.
Y our results must show evidence of independent work, and also show that some level of seriousness and thought

have been applied to each question.

Name
Class-section#

Question# Starting Time Ending Time

F: How long isthe survey?

The bulky part of the survey consists of instructions and sample questions to guide you. Each question is carefully
designed to solicit specific information about EXPRESS modules. Most of the questions should not take you more
that 5minutes. If you have a question understating what is required let meknow. Y ou are not required to read and
understand the EXPRESS schemas provided in the appendicesin order to answer the questions.

www.manharaa.com

Section 1. Importing Entities and Types

Importing. The word import here is used simply
to mean “copy and paste”. Importing atypeinto
anew schema means copying that type including
all other typesreferenced in itsdefinition. See
sample questions on next page examples bel ow.

Sample Questions for Section 1.

Assume the schema (schema samplel) givenin
Figure 1 is provided. Answer the following
guestions

SCHEMA sanpl el;

TYPE | abel = STRING
END_TYPE;

TYPE action_status = ENUMERATI ON COF

(EXECUTED, PENDI NG UNKNOWN) ;
END_TYPE;

TYPE age_val ue = | NTEGER,
END_TYPE;

TYPE real _nunber = REAL;
END_TYPE;

TYPE i nt eger _nunber = | NTECGER;
END_TYPE;

TYPE char_value = STRING1);
END_TYPE;

TYPE text = STRI NG
END_TYPE;

TYPE nunber _sel ect =

SELECT (real _nunber, integer_nunber);

END_TYPE;

TYPE string_select = SELECT
(char _val ue, text);
END_TYPE;

TYPE par anet er_val ue = SELECT

(nunber _sel ect, string_select);

END_TYPE;
ENTITY person;
nane: STRI NG
age: age_val ue;
END_ENTI TY;

ENTI TY measurenent ;

name : STRI NG
nunber _sel ect ;

neasur e_val ue
END_ENTI TY;

ENTI TY addr ess;
city: STRING
state: STRI NG
Zi p: | NTECER,

END_ENTI TY;

ENTI TY acti on;
name: STRI NG
initiator: person;

END_ENTI TY;

CNIN CALICR .

Figure 1. Sample schema

www.manaraa.com

1a) Import type label from schema samplel into a new schema called samplelA.

Explanation: In this example question, type label istheitem to
beimported. The typelabel isbased on an EXPRESS base type
STRING. Hence we simply copy that type into our schema. See
Figure la.

1b) Import type action_statusfrom schema samplelinto a
new schema called samplelB.

Explanation: In this example question, the item to import is
action_status. Type action_statusis an EXPRESS
ENUMERATION. Enumeration types do not reference
other typesin their definitions. Hence we simply copy that
type action_status; nothing else. See Figure 1b.

1c) Import entity address from schema samplelinto anew
schema called samplelC.

Explanation: In this example question, entity addressisthe
item to be imported. Entity address does not reference any
user-defined type and hence we simply copy that entity;
nothing else isimported with it. See Figure 1c.

SCHVEA sanpl elA;

TYPE | abel = STRI NG
END_TYPE;

END_SCHEMA;

Figure 1a: Answer to sample question a)

SCHVEA sanpl elB;

TYPE action_status = ENUMERATI ON CF
(EXECUTED, PENDI NG UNKNOWN) ;
END_TYPE;

END_SCHEMA,

Figure 1b: Answer to sample question b)

SCHVEA sanpl elC,

ENTI TY address;
city: STRING
state: STRING
zi p: | NTEGER,

END_ENTI TY;

END SCHEMA;

Figure 1c: Answer to sample question c)

1d) Import type number_select from schema samplelinto a new schema called samplelD.

Explanation: In this example question, type
number_select istheitem to beimported. Thisisa
SELECT type that references two other types
(real_number and integer_number) in its definition.
Therefore, we need to import both real_number and
integer_number.

Typereal_number is based on EXPRESS base type
REAL, so we simply copy real_number; nothing elseis
imported with it.

Typeinteger_number is also based on an EXPRESS
base type INTEGER, and again we simply import type

SCHEMA sanpl elD,
TYPE nunber _sel ect =

SELECT (real _nunber, integer_nunber);
END_TYPE;

TYPE real _nunber = REAL;
END_TYPE;

TYPE i nteger _nunber = | NTECER;
END_TYPE;

END_SCHEMA,

integer_number. See Figure 1d.

Figure 1d: Answer to sample question d)

www.manaraa.com

1e) Import entity action from schema samplel into a new schema called samplelE.

Explanation:
In this example question, entity action isthe item to be

imported. Thisentity hastwo attributes: name and initiator.

Attribute name is of type STRING, which is abase type.
However, the attribute initiator references entity person.
Entity person therefore needs to be imported.

In entity person, we also notice that type age_valueis

referenced viathe attribute age; hence type age_value needs

to be imported.

Type age_valueis based on an EXPRESS base type

INTEGER. We simply import the type age_value. See Figure

le

SCHEMA sanpl elE;

ENTITY acti on;
name: STRI NG
initiator: person;

END_ENTI TY;

ENTITY person:;

STRI NG
age_nunber;

nane:
age:
END_ENTI TY;

TYPE age_val ue = | NTEGER
END_TYPE;

FND SCHFMA:

Figure 1e: Answer to sample question €)

1f) Import entity measurement from schema samplel into a new schemacalled samplelF.

Explanation: In this example question, the item to be
imported is entity measurement.

Entity measurement references type number_select
viaattribute measure_value. Hence type
number_select needs to be imported.

We also notice that number_select is an EXPRESS
SELECT type that also references two other typesin
their definitions.

Importing number_select requires typesreal_number
and integer_number. See Figure 1f.

SCHEMA sanpl elF;

ENTI TY nmeasurenent ;

namne STRI NG
measur e_val ue nunber _sel ect ;
END_ENTI TY;

TYPE nunber _sel ect =
SELECT (real _nunber,
END_TYPE;

i nt eger _nunber) ;

TYPE real _nunber = REAL;
END_TYPE;

TYPE i nt eger _nunber = | NTECGER;
END_TYPE;

END_SCHEMA;

97

Figure 1f: Answer to sample question f)

www.manaraa.com

Section 1 Questions
The following gquestions are based on the edited version of AP203 provided in Appendix A. Please make sure you

time yourself.

1) Import typeday_in_month_number into a new schema called SchemalA.

How long did it take to compl ete this task?
Start time:
End time:

List any other factors that made this task more difficult or easier.

2) Import entity product_category into a new schema called SchemalB

How long did it take to complete this task?
Start time:
End time:

List any other factors that made this task more difficult or easier.

3) Import type hour_in_day into a new schema called SchemalC

How long did it take to complete thistask?
Start time:
End time:

List any other factors that made this task more difficult or easier.

4) Import entity contract_type into anew schema called SchemalD

How long did it take to compl ete this task?
Start time:
End time:

List any other factors that made this task more difficult or easier.

5) Import type ahead or_behind into anew schemacalled SchemalE.

How long did it take to comp |l ete this task?
Start time:
End time:

List any other factors that made this task more difficult or easier.

6) Import entity action into new schemacalled SchemalF.

How long did it take to compl ete this task?
Start time:
End time:

List any other factorsthat made this task more difficult or easier.

7) Import type change _request_iteminto a new schema called SchemalG.

How long did it take to compl ete this task?
Start time:
End time:

List any other factors that made this task more difficult or easier.

8) Import entity contract into new schema called SchemalG

How long did it take to compl ete this task?
Start time:
End time:

List any other factors that made this task more difficult or easier.

9) Import entity approval_relationship into new schema called SchemalH.

www.manaraa.com

How long did it take to complete this task?
Start time:
End time:

10) Import type generic_definition into anew schema called Schemall.
How long did it take to complete this task?
Start time:
End time:

List any other factors that made thistask more difficult or easier.

11) Import entity ellipse into a new schemacalled SchemalJ
How long did it take to complete this task?
Start time:
End time:

List any other factors that made this task more difficult or easier.

12) Import entity product_related_product_category into anew schemalk
How long did it take to complete this task?
Start time:
End time:

List any other factors that made this task more difficult or easier.

13) Import entity chosen_action into a new schemall
How long did it take to complete this task?
Start time:
End time:

List any other factors that made this task more difficult or easier.

www.manharaa.com

Section 2: Determining Underlying Types
In EXPRESS, an attribute can have its underlying type as one of the base types, an entity type, a select type, or an

enumeration type. Every attribute in a schemamust have atype that determines the set of possible values that can be
assigned to that attribute. There are several occasions when one needs to know the underlying type for an attribute.

Assume the following entity is given.
ENTITY test;
attributeX: typey;
END_ENTITY;
To determine the underlying type of attributeX, follow these steps:

First look for the definition of typeY to determine what it is.

1. IftypeYisan ENUMERATION type
The underlying type of attributeX isan ENUMERATION.

2. IftypeYisof type SELECT
The underlying type for attributeX isa SELECT.

3. IftypeYisof type ENTITY
The underlying type for attributeX isan ENTITY .

5. If typeYis of type defined type use the following method to get the underlying type
Determine the underlying type for the defined type

a) If theunderlying type for the defined type is an EXPRESS base type STRING, INTEGER, NUMBER,
BOOLEAN, LOGICAL
The underlying type for typeY is that base type

b) If theunderlying type for the defined type is a select type then
The underlying type for typeY is SELECT

c) If theunderlying type of the defined type is an enumeration type then
The underlying type for typeY is ENUMERATION

d) If theunderlying type for the defined type is another defined type then
Repeat steps a) to d).

100

www.manaraa.com

Sample questions for Section 2:
The following examples questions are based on the schemain Figure 1.

2a) Determine the underlying type for attribute status in entity person? What are the possible values that can be
assigned to attribute status?

Answer:
Underlying type: ENUMERATION
2b) Entity measure has an attribute called measure_value. What is the type name for attribute measure_value?
Determine the underlying type for the attribute measure_value.
Answer:
Type name for attribute meaure_value is number_select.
Underlying type: SELECT
2c¢) Determine the underlying type for attribute initiator in entity action?
Answer:
Underlying type for attribute initiator isSENTITY.

2d) Determine the underlying type attribute for age_number in entity person?

Answer: INTEGER
The attribute age_number is a defined type, which is based on an EXPRESS base type INTEGER.

101

www.manharaa.com

Section 2 Questions
The following questions are based on the edited version of AP203 provided in Appendix A. Perform each task and
record the time taken. Please make sure to time yourself.

14) Entity face_bound has an attribute called bound. What is the type of the attribute bound? What is the underlying
type?
How long did it take to compl ete this task?
Start time:
End time:
List any other factors that made this task more difficult or easier.

15) Entity si_unit has an attribute called prefix. What is the type name and underlying type for the attribute prefix?
How long did it take to compl ete this task?
Start time:
End time:
List any other factors that made this task more difficult or easier.

16) In entity coordinated_universal_time_offset, there is an attribute called sense, what is the underlying type for the
attribute sense?
How long did it take to complete this task?
Start time:
End time:
List any other factors that made this task more difficult or easier.

17) Entity measure_with_unit has an attribute called value_component. What is the type name and underlying type
of attribute value_component?
How long did it take to complete this task:
Start time:
End time:
List any other factors that made this task more difficult or easier.

18) Entity geometric_representation_context has an attribute coordinate_space, what is the type name and the
underlying type of the attribute coordinate_space?
How long did it take to complete this task?
Start time:
End time:
List any other factors that made this task more difficult or easier.

19) Entity b_spline_curve_with_knots has an attributeknot_spec, what is the type name and the underlying type of
the attribute knot_spec?
How long did it take to compl ete this task?
Start time:
End time:
List any other factors that made this task more difficult or easier.

20) Entity circle has an attribute called raduis. What is the type name and the underlying type for the attribute
raduis?
How long did it take to complete this task?
Start time:
End time:
List any other factors that made this task more difficult or easier.

102

www.manaraa.com

Section 3: Complex Domains
The domain of atypeisthe set of valuesthat the typeislimited to. The following questions ask for the domain of
certain types. To determine the domain of atype follow the following algorithm.

Assume the following entity is given.

ENTITY test;
attributeX: typeY;
END_ENTITY;

1. If typeYisan EXPRESS ENUMERATION
The domain of typeY is the set of values mentioned in the enumeration list.
(See Sample question 3a)

2. IftypeYisadefined type
The domain of typeY isthe domain of the type that the defined typeis based on
(See Sample question 3b)

4. IftypeYisof type ENTITY (for the purpose of this survey)
The domain of typeY is one of the following:
e) All subtypes of entity typeY
f) Theentity typeY itself (except wheretypeY is an abstract supertype)
(See Sampl e question 3c)

6. IftypeYisan EXPRESS SELECT (note a Select type has alist of typesin its select list)
For each type mentioned in the select list, determine the domain using steps 1,2,3,4.

The domain of typeY isthe sum of the domains of all types in the select list.
(See Sample question 3d)

103

www.manaraa.com

Sample Question for Section 3
The following sample questions are based on the schemain Figure 1.
3a) (Domain of an ENUMERATION type) What isthe domain of type action_status?

Answer:
Domain of type action_status ={EXECUTED, PENDING, UNKNOWN }

3b) (Domain for aDefined type) What isthe domain for type label ?

Answer:
Domain of type label is domain of base type STRING.

3c) (Domain of an entity type) Attributeinitiator in entity action has atype person where person is an entity type.
What are the possible types that can be assigned to the attribute initiator? In other words what is the domain
for type person?

Answer:
Attributeinitiator is of type person, which can be one of the following:
{ student | professor| studentprofessor } which is same as the domain of type person.

3d) (Domain of a SELECT type) What is the domain of type parameter_value?

Answer:
Domain of type parameter_value ={ number_select, string_select }

Domain of type number_select={real_number, intege_number }
Domain of type string_select = {char_value, text}

Complete domain of type parameter_value ={ real_number, integer _number, char_value, text } which sameas
{REAL, INTEGER, STRING(1), STRING}

104

www.manaraa.com

Section 3 Questions
The following questions are based on the edited version of AP203 provided in Appendix A. Perform each task and
record the time taken. Please make sure you time yourself.

21) Entity b_spline_curve_with_knots has an attribute called knot_spec. What is the type name fro the attribute
knot_spec?
How long did it take to compl ete this task?
Start time:
End time:
List any other factors that made this task more difficult or easier.

22) Entity assembly_component_usage substitute has an attribute called base. List the possible types that can be
assigned to the attribute base. (in other words, what are the possible types that the attribute base can assume) ?
How long did it take to compl ete this task?
Start time:
End time:
List any other factors that made this task more difficult or easier.

23) List al thetypes that make up the complete domain for type formal_approval ?
How long did it take to compl ete this task?
Start time:
End time:
List any other factors that made this task more difficult or easier.

24) Entity valid_reference_source has an entity called source. List the possible types that can be assigned to the
attribute sour ce can assume (i.e. in other words, what is the domain of type approved_source_of_reference)?
How long did it take to complete this task?
Start time:
End time:
List any other factors that made this task more difficult or easier.

105

www.manaraa.com

Section 4: Inheritance Hierarchies

Root of an inheritance tree. The root of an inheritance tree (hierarchy) is the uppermost entity without any supertype.
The following questions ask you to determine the supertypes and subtypes as well as the rootsin certain inheritance
hierarchies. The example below is provided to guide you.

Sample Questions for Section 4 SCHEMA sanpl e3;

a) Entity undergrad_student isin asimple ENTI TY person
!nher_ltance h_|erarchy. What isthe root of this ABSTRACT SUPERTYPE OF(ONECF
inheritance hierarchy? (mal e, fenmle)

ANDCR
Answer: person (student, professor));
. . . : STR

b) What isthe direct supertype of entity Qggf" age_’r\ﬁnber;
undergrad_student? END_ENTI TY;

Answer: student ENTITY nal e
SUBTYPE(person);
END_ENTI TY;

ENTITY fenul e

SUBTYPE(person);
END_ENTI TY;

ENTI TY st udent

SUBTYPE(person);
END_ENTI TY;

ENTI TY grad st udent

SUBTYPE(student);
END_ENTI TY;

ENTI TY under grad st udent
SUBTYPE(student);

Figure 3: Sample schema for Section 4 questions

106

www.manaraa.com

Section 4 Questions
The following questions are based on the edited version of AP203 provided in Appendix A. Perform each task and
record the time taken. Please make sure you time yourself.

24) Entity calendar_date is part of asimpleinheritance hierarchy. What isthe root of thisinheritance hierarchy?
How long did it take to complete this task?
Start time:
End time:
List any other factors that made this task more difficult or easier.

25) Entity face_bound is also part of an inheritance hierarchy. What isthe root of thisinheritance hierarchy?
How long did it take to compete this task?
Start time:
End time:
List any other factors that made this task more difficult or easier.

26) Find the root of the inheritance hierarchy that entity conic is part of.
How long did it take to compl ete this task?
Start time:
End time:
List any other factors that made thistask more difficult or easier.

107

www.manharaa.com

APPENDIX G

SURVEY RESULTS—TIME FOR REUSING EXPRESS MODULES
This Appendix presents the results obtained from the survey. Each column in the table shows the
type and level of coupling of the type being searched for in each question. The rows give the
reported times. For instance, for DAC_ENT level O, two questions were asked (Question 2 and,
Question 4). The times (in minutes) recorded for these questions were added and averaged. A
summary of the analysis of this data is also given in Chapter 5. (See Appendix F for survey
guestions). All times are in minutes recorded to one decimal place.

108

www.manaraa.com

DAC ENT

Time (min) for Level 0 Time (min) Level 1 Time (min) Level 2 Time (min) Level 3

Survey Survey Survey Survey Survey Survey Survey Survey

Question Question Question Question Question | Question | Question | Question

2 4 6 14 8 9 12 13
2.0 1.0 4.0 1.0 5.0 1.0 8.0 5.0
4.0 5.0 5.0 8.0 3.0 9.4 6.C 3.0
1.3 0.8 0.9 4.0 2.0 6.0 2.2 1.8
3.0 1.0 2.0 15.0 4.0 1.0 8.0 3.0
7.0 4.0 5.0 4.0 9.0 5.0 10.0 10.0
4.0 1.0 3.0 2.5 6.0 6.0 5.C 2.0
1.0 0.5 2.0 2.0 1.5 2.2 2.5 3.6
2.0 1.0 1.0 9.0 2.0 2.0 2.0 1.0
5.0 3.0 1.4 4.0 4.0 3.0 8.C 4.0
6.0 3.0 4.0 6.0 6.0 1.0 15.0 9.0
2.0 2.0 4.0 2.0 4.0 1.0 10.0 6.0
2.0 2.0 4.0 2.0 6.0 2.0 11.0 9.0
2.3 1.8 3.0 4.0 5.5 1.8 20.¢ 5.0
3.0 3.0 3.5 5.0 3.0 10.0 2.0 2.0
1.0 2.0 3.0 1.0 3.0 5.0 4.0 3.0
1.7 2.8 3.0 3.5 2.3 1.4 2.5 2.8
2.0 1.2 2.5 2.0 3.2 2.0 1.5 2.0
8.5 1.8 2.3 2.0 13.0 9.¢ 10.0 2.0
2.0 1.0 2.0 2.0 4.0 5.0 2.C 5.0
3.0 4.0 5.0 2.0 7.0 3.4 14.0 5.0
6.0 3.0 3.0 8.0 4.0 9.¢ 3.Q 3.0
6.0 2.0 3.0 4.0 7.0 3.0 12.0 5.0
5.0 2.0 7.0 4.0 5.0 2.0 24.0 8.0
1.8 1.5 3.3 2.3 3.5 1.5 11.€ 4.9
3.0 2.0 5.0 2.0 6.0 1.0 5.0 4.0
4.0 6.0 6.0 10.0 8.0 10.0 6.C 2.0
5.0 2.0 4.0 15.0 4.0 4.Q 9.¢ 8.0
4.3 1.3 3.0 5.0 4.2 3.0 9.0 3.5
3.0 2.0 5.0 2.0 4.0 4.Q 10.0 7.0
1.0 3.0 2.0 1.0 4.0 2.0 8.C 4.0
5.0 3.0 6.0 9.0 4.0 3.0 6.C 4.0
Sum 176.4 251.2 266.3 384.5
[Mean 2.85 4.05 4.30 6.20
109

www.manaraa.com

Inheritance DAC_SEL
Time (min) | Time (min) | Time (min) Time (min)- Time (min) | Time (min)
for Level 1 | for Level 2 | for level 3 for Level 1 for Level 2 | for Level 3
Survey Survey Survey Survey | Survey Survey Survey
Question Question Question Question [Question] Question Question
24 25 26 7 17 10 24

2.0 2.0 2.0 4.0 2.0 4.0 3.0

4.0 3.0 2.0 2.0 5.0 6.0 5.0

0.6 1.0 1.0 3.5 0.8 2.9 1.5

1.0 1.0 1.0 3.0 1.0 4.0 5.0

3.0 5.0 8.0 4.0 3.0 9.0 1.2

3.0 1.0 1.0 9.0 2.0 15.0 4.0

2.0 2.0 1.5 2.0 1.3 2.0 1.0

1.0 1.0 1.0 1.0 1.0 1.0 4.0

1.0 2.0 4.0 3.0 2.0 5.0 11.0

1.0 2.0 5.0 5.0 5.0 6.0 1.0

1.0 1.0 1.0 4.0 2.0 6.0 3.0

2.0 3.0 2.0 7.0 3.0 9.0 15.0

1.2 2.3 2.2 4.8 2.0 6.0 6.0

6.0 8.0 9.0 2.0 3.0 5.0 4.0

2.5 4.0 1.0 2.0 7.0 2.0 4.0

2.0 1.0 4.0 5.0 2.0 4.0 5.3

1.2 4.0 3.0 3.0 2.5 1.5 17.0

9.0 6.0 11.0 4.0 4.0 1.5 2.0

2.0 2.0 2.0 1.0 2.0 1.0 1.3

3.0 1.0 3.0 6.0 2.0 7.0 2.0

4.0 2.0 5.0 3.0 2.0 2.0 5.0

2.0 2.0 3.0 5.0 4.0 5.0 4.0

2.0 4.0 4.0 8.0 2.0 7.0 12.0

1.2 1.0 1.2 3.3 1.3 4.5 2.0

1.0 2.0 2.0 3.0 2.0 5.0 12.0

4.0 3.0 3.0 3.0 6.0 6.0 4.0

4.0 9.0 2.0 3.0 2.0 4.8 6.0

1.3 2.5 1.3 4.5 1.8 6.0 4.0

3.0 3.0 5.0 7.0 2.0 5.0 3.0

1.0 2.0 1.0 4.0 2.0 5.0 2.0

2.0 1.0 1.0 3.0 2.0 2.0 4.0

Sum (74,0 I83.8 93.2 Sum 201.7 149.9 154.3
|[Mean 239 |2.7O 3.00 Mean 3.35 4.84 4.98
110

www.manaraa.com

DAC DEF

Time (min) for | Time (min) for | Time (min) for
Level 1 Level 2 Level 3
Survey Survey Survey

Question 1 Question 18 Question 20
3.0 2.0 1.0
5.0 5.0 6.0
1.3 1.0 1.3
2.0 1.0 2.4
4.0 4.0 6.0
1.0 3.0 2.4
1.3 1.0 1.5
2.0 3.0 2.0
3.0 2.0 3.4
7.0 5.0 4.0
2.0 2.0 5.0
4.0 2.0 6.0
2.5 3.5 2.4
2.0 3.0 5.0
3.0 6.0 3.4
2.0 3.0 1.0
2.5 4.0 4.Q
1.0 2.0 1.4
1.8 2.0 1.0
3.0 8.0 6.0
6.0 1.0 1.0
2.0 1.0 1.8
3.0 2.0 4.Q
2.0 3.0 2.4
2.0 2.0 3.4
2.0 3.0 4.Q
3.0 1.0 5.4
4.0 2.0 5.4
2.0 3.0 3.0
3.0 2.0 2.4
2.0 3.0 1.0

Sum 84.4 85.5 95.4
[Mean 2.72 2.76] 3.08
111

www.manaraa.com

VITA

KWAKU OWUSU-TIEKU

Personal Data: Date of Birth: March 14, 1972
Place of Birth: Adomfe, Ashanti Akim, Ghana
Education: Port Moresby International High School, Port Moresby, PNG

East Tennessee State University, Johnson City, Tennessee,
Computer Science, BS, 1998

East Tennessee State University, Johnson City, Tennessee,
Information Science, MS, 2001

Professional Graduate Assistant, East Tennessee State University,
Experience: Johnson City, Tennessee, 1998-2000

Software Designer/Programmer, Department of Computer &
Information Sciences, East Tennessee State University,
Johnson City, Tennessee, 2000-2001

Software Engineer, Sprint PCS, Nashville, Tennessee, 2001

www.manaraa.com

