
www.manaraa.com

Using Software Engineering Metrics In

AP Modularization

A thesis

presented to

the faculty of the Department of Computer and Information Sciences

East Tennessee State University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science in Computer Information Science

by

Kwaku Owusu-Tieku

August 2001

Dr. Donald Sanderson, Committee Chair

Dr. Martin Barrett, Committee Member

Dr. Phillip Pfeiffer, Committee Member

Keywords: Database, AP Modularization, STEP/EXPRESS, Software Engineering Metrics

www.manaraa.com

UMI Number: 1405549

__

UMI Microform 1405549

Copyright 2001 by Bell & Howell Information and Learning Company.

All rights reserved. This microform edition is protected against

unauthorized copying under Title 17, United States Code.

__

Bell & Howell Information and Learning Company
300 North Zeeb Road

P.O. Box 1346
Ann Arbor, MI 48106-1346

www.manaraa.com

2

ABSTRACT

Using Software Engineering Metrics In

AP Modularization

by

Kwaku Owusu-Tieku

Significant amount of work has been done in software engineering in terms of reuse. With the

use of object-orientation and design patterns that support the development of reusable modules, it

appears that the development and reuse of software modules in creating new systems is

becoming more and more common. The software engineering world, however, has taken reuse

more seriously than database; more research and improvement in reuse has been made in

software engineering than in database. This paper investigates how software engineering metrics

can be applied in the development of reusable database modules. This research provides a model

for predicting the reusability of EXPRESS modules. It establishes a relationship between

coupling and reusability of EXPRESS modules and provides a set of metrics that may be used in

the proposed model for measuring coupling in EXPRESS modules.

www.manaraa.com

3

ACKNOWLEDGEMENTS

I would like to thank my parents for their love and support and for their dedication to higher

education. Without them, this would not have been possible. I would also like to thank Dr.

Donald Sanderson, my thesis advisor, for his supervision and patience, Dr. Barrett and Dr.

Pfeiffer, for advising and critique, Mr. David Price, Project Lead for AP Modularization effort,

for helping me find literature on AP Modularization and sample EXPRESS modules. Your

contributions are greatly appreciated. I would also like to thank all the students who participated

in the survey. I could not have done this without them.

www.manaraa.com

4

CONTENTS

ABSTRACT...2

ACKNOWLEDGEMENTS ...3

CONTENTS...4

LIST OF FIGURES ...8

DEFINITION OF TERMS ..9

Chapter Page

1. INTRODUCTION ...11

Statement Of The Problem...11

Motivation..11

Objectives...12

Hypotheses...12

Thesis Outline And Approach ...13

2. REVIEW OF RELATED LITERATURE ...14

Introduction..14

Reuse And Reusability...14

Reusability: A Definition...14

Types Of Reuse ..15

By Substance..15

By Scope ..15

By Mode...15

By Technique ...15

By Intention..15

By Product..16

What Is A Reusable Software Module? ...17

Designing Components For Reusability ..17

Factors Influencing Software Reuse ..18

www.manaraa.com

5

Coupling ...18

Cohesion ..18

Complexity...18

Modularity..18

Reusability Metrics And Models ...18

The Factor, Criteria, Measurement (FCM) Model...18

Proposed Measurement Model ...19

Database Module Reuse - A Definition...19

Proposed Model ...20

Factor: Understandability...20

Criteria: Coupling ..20

Survey Of Software Engineering Metrics ..21

Introduction..21

Some Software Design Metrics ...21

3. STEP/EXPRESS AND AP MODULARIZATION...24

STEP ..24

Introduction..24

The Data Exchange Problem..24

What Is STEP? ...25

STEP Architecture And Components ..25

The Application Protocol (AP) ..28

Resources For AP Development ..28

The AP Development Process ...29

EXPRESS ..29

Introduction..29

Features Of EXPRESS...30

Schema ...30

Data Types ...30

Simple Data Types...30

Aggregation Data Types ..30

Constructed Data Types ..31

www.manaraa.com

6

Named Data Types...31

Derived Data Types ...32

Rules...33

Functions And Procedures ...33

Inverse Relationships ...33

Supertypes, Subtypes, And Inheritance ...34

Schema Interfacing ..34

AP Modularization...35

Introduction..35

Goals Of AP Modularization ...36

Structure Of The Modularized AP ...36

4. METRICS APPLICATION AND SURVEY ANALYSIS ...38

Selected Metrics And Measurement Units ..38

Introduction..38

The Reuse Model For AP Modularization...38

Reuse "as- is" ..39

Reuse By Extension...39

Reuse By Specialization...39

Description of Proposed Candidate Metrics ..39

Data Abstraction Coupling (DAC) ..39

Data Abstraction Coupling from Entity Types (DAC_ENT)40

Data Abstraction Coupling from Enumeration Types (DAC_ENUM)40

Data Abstraction Coupling from Select Types (DAC_SEL).....................40

Data Abstraction Coupling from Restricted ..40

(Defined) Types (DAC_DEF) ..40

Number of Supertypes (N_SUP) .. 40

Number of Subtypes (N_SUB) ..41

Depth Of Inheritance (DIT) ...41

Depth Of Data Abstraction Coupling (DAC_DEPTH)41

Applying The Metrics ..42

Types Of Coupling Measured ..42

www.manaraa.com

7

Coupling Through Data Abstraction (DAC)..43

Coupling Through Inheritance (C_INH) ...44

5. ANALYSIS ..45

Analysis Of Sample AP ...45

Attribute Types And Data Abstraction Coupling (DAC)46

Inheritance..46

Analysis Of Survey Data..49

6. CONCLUSION..52

BIBLIOGRAPHY..54

APPENDIX A: EXPRESS LISTING FOR EDITED VERSION OF AP 203(ISO-10303-203)...56

APPENDIX B: ANALYSIS OF SCHEMA AP 203 (ENTITY TYPES)76

APPENDIX C: ANALYSIS OF SCHEMA AP 203 (ATTRIBUTE TYPES)80

APPENDIX D: ANALYSIS OF SCHEMA AP 203 (SELECT TYPES)......................................91

APPENDIX E: ANALYSIS OF SCHEMA AP 203 (RESTRICTED TYPES)92

APPENDIX F: SURVEY ..93

APPENDIX G: SURVEY RESULTS-TIME FOR REUSING EXPRESS MODULES.............108

VITA ..112

www.manaraa.com

8

LIST OF FIGURES

Figure Page

1. Proposed Measurement Model ..20

2. Structure Of The STEP Standard ...27

3. A Schema In EXPRESS...30

4. Aggregation Types ...31

5. Constructed Types..31

6. Entity Declaration..32

7. Example Use Of Defined Type ..32

8. Example Use Of Derived Attribute..33

9. Local Rules ..33

10. A Simple EXPRESS Function...33

11. An Inverse Relationship...34

12. Inheritance with ONEOF constraint ..34

13. Inheritance With ONEOF And ANDOR Constraints ..35

14. Structure Of A Modularized AP ..36

15. Reuse Model For AP Modularization..39

16. Complete Measurement Model With Metrics..42

17. DAC_DEF..43

18. DAC_DEF..43

19. DAC_ENT ...43

20. DAC_ENUM ...43

21. DAC_SEL..44

22. Coupling Through Inheritance ...44

23. Type Composition For The Sample Schema ...45

24. Data Abstraction By Percentage ..46

www.manaraa.com

9

DEFINITION OF TERMS

Attribute. The term attribute is used in software and database modeling to mean characteristic of

an object. Example: a name is an attribute of a person.

Class. A class is a model of a real world concept or object particular to object-oriented

programming. A class specifies the prototype for a set of objects that share common

characteristics and functionality. [http://www.instantweb.com/~foldoc/]. A class contains

methods, which specify the functionality of the object, and attributes, which specify the state or

characteristics of the object.

Database module. A database module is a data specification that models one or more related

concepts. The term database module can be used to refer to a single entity or a set of entities in a

schema that collectively describe an object or a concept.

Entity. An entity is a model of a real world object or concept particular to a type of database. In

a database, a declaration of an entity introduces a new object into a data model and gives the

characteristics (attributes) of that concept. The use of an entity in database is analogous to the

use of a class in object-oriented programming.

Method. A method is an element of a class that specifies one aspect of the class’s behavior. In

procedural programming, a method is referred to as a function.

Object-oriented programming (OOP). Object-oriented programming is a school of thought that

emphasizes the use of objects in programming. Solving a problem in OOP involves identifying

what objects collaborate in carrying out the task and the responsibility of each object involved.

Product Data. The term product data here is used to refer to all information created or used by

computer-aided design (CAD), computer-aided engineering (CAE), computer-aided

manufacturing (CAM), and managed in a computer system [10]

www.manaraa.com

10

Software Module. The term module refers to an independent piece of code that has a specific

functionality. A software module can be as small as a single function. In the broadest sense, it

can also refer to a class or a set of classes that collaborate to perform common task.

www.manaraa.com

11

CHAPTER 1

INTRODUCTION

Statement Of The Problem

Reuse is the application of existing solutions to new problems. Reuse can reduce the time

spent in creating solutions by avoiding duplicated efforts. In software engineering the concept of

reuse has been explored and has been reported to be very beneficial. Frakes, for example, notes

that “using reusable software generally results in higher overall productivity” [11]. According to

Poulin et al. “the financial benefit attributable to reuse during the development phase is 80

percent of the cost of developing new code” [19]. The benefits are not only realized in

productivity but also in quality; software developed using existing components can be more

reliable than those developed from scratch because the reused components are usually well tested

and have been used in several developments.

However, the reusable components must exist before they can be reused. The absence of

formal reuse practices is, therefore, often not a result of unwillingness to practice reuse; rather

the problem arises from lack of reusable objects. In both software and database, developers have

produced large quantities of logic that cannot be reused due to its lack of structure and over-

specificity. A partial solution to the problem of reuse, therefore, lies in the answer to the

following question: What features make modules reusable, and how can one achieve such

features in database design models? This research is an attempt to answer the above question.

Motivation

The research presented in this paper is motivated by the gains in productivity in software

development due to reuse. While reuse has resulted in increased productivity and reliability in

software [11], the concept and practice of reuse is still unexplored in database module design.

One area in database design where reuse has recently received some attention is in the

development of EXPRESS database modules known as Application Protocols or simply APs.

EXPRESS is the data modeling language used in STEP. Application protocols are EXPRESS

modules that form the unit of information exchange in STEP (See Chapter 3). Current

www.manaraa.com

12

EXPRESS modules are huge, monolithic, and tailored to specific applications. In a process

known as AP Modularization, developers are making efforts to design modules that are smaller,

independent, and hopefully reusable. However, there are no guidelines as to what determines if a

module is a good candidate for reuse or as to how a reusable module should be designed.

Because object-oriented software modules bear a close resemblance to EXPRESS database

modules, it is assumed that if metrics and guidelines similar to those used to develop reusable

object-oriented software, are applied to the design of database modules, the gains in productivity

seen in software may also be realized in database development.

Objectives

AP Modularization aims to achieve reusability through smaller modules designed to

address single or closely related concepts. In software, the reusability of a module is determined

by several factors, including coupling and complexity [24][18]. It is believed that in database

several factors will also determine whe ther or not a module is reusable. The primary objective in

this research is to determine whether or not coupling has effects on reuse of database modules.

Hypotheses

This research sets to establish whether or not coupling influences database module reuse.

In statistics, a single hypothesis is usually expressed as two alternative hypotheses. The first part

of a hypothesis is called the null hypothesis denoted by H0. The second part of the hypothesis is

the actual hypothesis (H1) that is expected to be proven true. The proposed hypotheses are

expressed below:

H0: The time required to use an existing EXPRESS module does not increase

significantly as coupling between the modules increases.

H1: The time required to use an existing EXPRESS module increases significantly

as coupling between the modules increases.

www.manaraa.com

13

Thesis Outline And Approach

The outline of this thesis is as follows. Chapter 2 presents a study of reuse and its benefits

in software engineering. Specifically, the features that promote reusability of software modules

and the metrics for evaluating these features were identified. Selected metrics were chosen to

serve as a basis from which specific metrics were derived for evaluating EXPRESS database

modules. In addition, a description of proposed measurement model to be used in this study is

presented.

 Chapter 3 presents a study of the EXPRESS modeling language and AP Modularization

and its goals, which form the basis for this study. In Chapter 4, the candidate metrics to be

applied to a sample AP are identified and described. A detailed description of how the metrics

were applied to the sample schema is also provided in this chapter. Chapter 5 presents the

analysis of the results from applying the metrics to the sample schema. After applying the

candidate metrics to sample schema, a survey was conducted to collect information about the

difficulty in the use of EXPRESS modules. The survey asked participants to use existing

EXPRESS schema items from the sample schema to which the candidate metrics have been

applied. The intent was to record the amount of time taken to understand the selected modules.

The analysis of this survey is given in this chapter. Chapter 5 presents both the findings from

applying the metrics and the survey conducted and its results. Chapter 6 provides the final

conclusion.

www.manaraa.com

14

CHAPTER 2

REVIEW OF RELATED LITERATURE

Introduction

The background research in this paper involves two separate areas: software reuse and

metrics and database schema design using EXPRESS. The first part of the research is devoted to

reuse and software engineering metrics. The second part of the research focuses on STEP, an

ISO standard of which EXPRESS is a part, including major features provided by EXPRESS for

developing database modules.

Reuse And Reusability

Reusability: A Definition

Software reuse is the use of existing software components to construct new systems [20].

Reusing existing parts or components is a standard part of software engineering and human

problem solving in general. However, reuse in software development is more effective if

practiced formally [11]. Formal reuse implies that reuse must be viewed as a goal to strive for,

not just a result that happens by chance. Before reuse can take place, the reusable components

must exist in some form, and designers must be aware of their existence and the functionalities

they provide. If formal reuse is part of an organization’s overall development goals, then the

software construction process is different; not only are developers tasked to find and use existing

artifacts, they also have to assure that the final product can also be reused in future development.

The task of storing and searching for reusable components can be streamlined using a populated

repository of components that have been tested and proven reliable. In software engineering,

such repositories exist in the form of user interface toolkits, frameworks, and libraries. In order

to discuss the issues associated with the design of reusable modules, one must first understand

the different kinds of reuse that exist.

www.manaraa.com

15

Types Of Reuse

Software engineering literature lists many different kinds of reuse, but one of the most

comprehensive lists is the one provided by Prieto-Diaz [20].

By Substance. Reuse by substance is categorized further into three sub-categories. Idea

reuse involves reusing some existing idea that has been used to solve some recurring problem.

Artifact reuse is the reusing of old components. Finally, procedural reuse is the reuse of exiting

algorithms.

By Scope. Reuse by scope can either be vertical or horizontal. In vertical reuse, existing

components are used to construct new applications within the same domain. In horizontal reuse,

the components are used outside the domain for which they were originally designed. From

design point of view, it may be easier to construct reusable components for vertical reuse than

for horizontal reuse. Designing modules for horizontal reuse is complicated by needs to

anticipate a larger scope and design the components in the most generic form to allow inter-

domain application development.

By Mode. Reuse by mode entails the approach by which an organization conducts reuse.

An organization may conduct reuse with a formal approach or in an ad-hoc manner. The state of

practice in reuse in many software engineering organizations is characterized by an ad-hoc

approach [20].

By Technique. Reuse can also be characterized by how the new system is actually built.

A new system may be constructed by putting together existing components (compositional

reuse), or by using high- level specifications and application and code generators to produce a

new system (generative reuse).

By Intention. In reuse, whatever artifact is reused, it may be used as- is, or it may be

modified or extended to provide additional functionality. The reuse of components without any

modification is termed blackbox reuse. Whitebox reuse is when the component is modified

www.manaraa.com

16

before use. According to Prieto-Diaz, whitebox reuse is prevalent in the current state of practice

[20].

By Product. Reuse by product looks at what kind of artifact is reused. There are various

products developed during the different phases of the software development. Although most of

these products are developed without reuse in mind, they often become useful in new projects.

These products include system architecture, high- level specification, design, objects, source

code, and text.

Both software and database designers must be aware of the different facets of reuse. They

should also keep the following in mind when designing reusable modules:

• Reusable components should be designed with the intent for reuse [1,2,9,27]. The major

reason why the state of practice in software reusability is characterized by ad-hoc and

whitebox reuse is that most software components are not designed for reuse. Existing

software is not well documented; it is usually designed with restrictions that are specific to

the current application. These factors limit the reuse of modules in other applications.

• Reusable components should be tested or certified [20]. The testing of modules assures

quality and reliability. However, the size of the library and the complexity of the software

complicate the task of testing a large library of modules.

• Reusable components should be classified and collected into accessible libraries [7,11].

Reuse cannot take place if the components are not accessible. In software organizations,

reuse can be a very difficult task if components are not grouped together into some organized

form.

• Reusable components should be accompanied by documented interfaces [11]. Developers

often spend large amounts of time trying to find out what functionality is provided by

frameworks and how to use them. The task of selecting and using components can be further

complicated by the lack of documentation describing what components do.

www.manaraa.com

17

What Is A Reusable Software Module?

Although software reuse is still practiced in an ad-hoc manner, improvements continue to

be made in this field especially in the area of graphical user interface design. Frameworks such

as the Microsoft Foundation Classes (MFC) and the Java Foundation Classes (JFC) simplify

some complex tasks by providing generic solutions that can easily be applied to similar problems

in the creation of graphical user interface applications. A reusable software module can be

thought of as a unit of code or data specification that provides a specific functionality or

semantic. The ideal features of such a module include functional independence, extensibility, and

reliability. Functional independence is concerned with modules that perform single tasks.

Extensibility is the ability to modify a module so that it performs new or additional tasks.

Reliability is concerned with modules that produce the same results accurately and cons istently.

If creating software from reusable components is difficult, designing the reusable modules is

even more difficult. For both designers and users of reusable modules, some of the questions that

need to be asked include the following: What are the indicators of reusable modules? What

criteria can be used to evaluate modules for reusability?

Designing Components For Reusability

The creation of reusable modules and the identification of such modules by developers is

part of what makes reuse a difficult task. A design activity is a recursive decomposition of larger

components or modules into desired level of granularity and functionality [17]. The art of

decomposing larger components to achieve reusability requires an identification of modules that

could be potential sources of features that may hinder reuse. The task of identifying error-prone

modules requires that the factors that prohibit reuse be known so that both qualitative and

quantitative guidelines or metrics can be developed for evaluating the modules. When such

guidelines and metrics are devised, they may be used to pinpoint areas that need rework in the

design, but first the indicators of reusability must be identified.

In order to devise a measurement model or qualitative guidelines for evaluating reusable

components, the factors that are known to influence reuse must be identified. In software

engineering, certain factors are known to influence reuse. These factors include coupling,

cohesion, complexity, and modularity.

www.manaraa.com

18

Factors Influencing Software Reuse

Coupling. Coupling is a measure of interconnection among modules [18]. In software

design, the goal is to achieve low coupling among components. Low coupling will result in a

system with independent components that are easy to understand, easy to maintain, easy to test,

and possibly more reusable than highly coupled modules.

Cohesion. Cohesion is concerned with individual components having singleness of

purpose [18]. In software, high cohesion is sought because high cohesion promotes modularity,

which makes testing and maintenance less difficult [2].

Complexity. Complexity can be viewed in different ways. Algorithmic complexity is a

measure of an individual algorithm’s intricacy. Structural complexity is a measure of the

system’s interrelatedness: for example nesting, interdependence of objects, or inheritance. [9].

Modularity. Modularity in software is the division of large components into smaller

manageable units each addressing a smaller part of the problem to be solved. Modularity reduces

the complexity of a large program by breaking the problem into manageable units [18].

Metrics have been developed in software engineering to quantitatively measure these

factors and such metrics have been used to assess software modules for reusability. In this

research, the focus is whether or not coupling affects database module reuse.

Reusability Metrics And Models

The Factor, Criteria, Measurement (FCM) Model

In software engineering, several measures have been used to evaluate software quality. At

minimum, for a component to be considered for reuse, it must be of good quality. Measuring

quality quantitatively is not a simple task. As stated by Fenton et al., “quality is multi-

dimensional; it does not reflect a single aspect of a particular product ” [9]. Many software

metrics text and papers [9,12] give models for measuring software quality. One of these models,

proposed by Fenton and colleagues [8], define factor, criteria, and metric (FCM) for each

measurement. FCM is a tree- like structure where the top level lists the factors—items that are

www.manaraa.com

19

known to be the major indicators in the evaluation of the attribute in question. For instance, in

evaluating quality, one may look at usability, testability, and portability as factors giving

indication of the quality of a product. The second level in FCM consists of a list of criteria for

each factor. These lower level items are easy to understand and measure. The last level

comprises of the actual metrics that define the specific measurements for each criterion. For

instance the criteria comment ratio may be defined as a criteria for evaluating understandability.

For this criterion, specific metrics can include counting the number of comments lines per source

line and counting the number of comments lines per components.

Proposed Measurement Model

Database Module Reuse — A Definition

In this research, a measurement model based on McCall’s FCM model will be used for

evaluating and predicting the reusability of EXPRESS database modules. The proposed

measurement model is shown in Figure 1. In the proposed model, reusability is the final goal.

The major factor chosen as the indicator of reusability with respect to database modules is

understandability. Understandability is a qualitative attribute and, hence, is difficult to measure

directly. Coupling is used as an indirect measure of understandability. The major assumption

here is that in order to reuse a module, one needs to see the definition of that module in an

attempt to understand it. Understanding the module can be complicated if that module is coupled

with many other modules. Therefore, the degree of coupling in a module can be an indication of

the effort required to understand the module, which can affect reuse. Specific metrics are hence

chosen to measure the features in EXPRESS database modules that introduce coupling. The

following sections will provide a definition of reusability with respect to database modules as

used in this research.

One of the goals of this research is to be able to recommend metrics that can be used to

evaluate and predict the reusability of EXPRESS database modules. The definition of reusability,

as used in the proposed measurement model, is based on the reuse model of AP Modularization

described in Chapter 4. A database module is said to be reusable if it can be

a) used as part of another application or as part of a larger module without any modification to

it, or

www.manaraa.com

20

b) modified to add extra functionality (extension) before using it in another application or as

part of a larger module, or

c) modified to restrict its domain or scope (specialization) before using it as part of another

application or as part of a larger module.

Fig 1: Proposed Measurement Model

Proposed Model

Factor: Understandability. In this research, understandability is defined as the ability to

comprehend a module (in terms of time taken to understand it) given the minimum or no internal

documentation. The level of difficulty or the amount of time required to understand a module is

important because developers using a module need to understand both syntactic and semantic

aspects of a module to be able to make changes to the module. The level of understandability of

a module is related to the coupling within the module. The more coupled a module with other

modules, the harder it is to comprehend it.

Criteria: Coupling. Coupling is chosen as a criteria in determining the reusability in the

proposed model not only because it is often quoted as one of the determining factors in software

quality [18] but also because a number of coupling measures are mentioned in object-oriented

metrics [2][5][17].

www.manaraa.com

21

Survey Of Software Engineering Metrics

Introduction

Recent research in software design metrics has emphasized complexity, especially,

design complexity, and reusability. Some of the classical complexity measures described by

Fenton et al. [9], including Cyclomatic Complexity, have been used in evaluating quality in

procedural software. Another trend has been to focus on object-oriented metrics to capture

features of object oriented software. Factors addressed include complexity, reusability [6,22],

and maintainability [3]. Emphasis has shifted from code (algorithmic) complexities to design

complexities capturing features such as complexity of inheritance hierarchies [17,24], coupling

and cohesion [2,17], and interface complexity [5,15].

Some Software Design Metrics

This section lists some software engineering metrics that have been used to measure

software quality. The purpose of this list is to provide candidate metrics that can be used or

adapted for use in the proposed measurement model.

1. Source Lines Of Code (SLOC) [5]. SLOC is the simplest of the traditional code- level metrics

that use program size to determine program effort and complexity. Various forms of this metric

exist depending on what is deemed to be important. Because software today can be generated by

reuse of existing products and also by automatic code generators, this metric has become less

important.

2. McCabe’s Cylcomatic Complexity (CyC) [5]. First proposed by McCabe in 1976, this metric

uses directed graphs to capture the algorithmic complexity of a module. McCabe proposed that

the higher the value for this metric, the more complex a module. The unit of measurement is a

module or function.

3. Class Method Complexity (CMC) [5,15]. Originally proposed by Chidamber and Kermerer

(C&K) as WMC (Weighted Method Per Class), Li redefined two metrics, the CMC (Class

Method Complexity) and NLM (Number of Local Methods), to capture what the WMC was

designed to measure. CMC is a sum of the weighted values for method complexity. The

www.manaraa.com

22

weighted complexity can be calculated using for, instance, McCabe’s Cylcomatic complexity.

The rational for this metric is that the more methods in a class and the higher the values for their

weighting factors, the more complex the class, which makes it more difficult to use. The unit of

measurement is class method.

4. Number of Local Methods [15]. NLM is also one of the object-oriented metrics proposed by

Li. NLM measures the total number of local methods per class. The unit of measurement is class

method.

5. Average Method Complexity (AMC) [5]. This metric is a modified version of Chidamber and

Kermerer’s WMC. It considers the average method complexity as a good indicator of overall

complexity rather than the sum.

6. Number Of Variables (NAV) [22]. Mentioned by Reyes and Carver, this metric measures the

total number of variable in a class. The unit of measurement is class variable.

7. Depth Of Inheritance (DIT)[5]. This metric is one of the metrics from C&K suite. It measures

how deep a class is in an inheritance hierarchy. The unit of measurement is class. The viewpoint

is based on the fact that the deeper a class is in an inheritance hierarchy, the more complex it

becomes, because many classes higher in the hierarchy can affect it.

8. Number Of Ancestors (NAA) [5,15]. Li tries to capture the effect of inheritance hierarchies on

classes by defining the NAA metric. His metric is more specific than the C&K’s DIT because it

captures exactly which classes can affect another class by inheritance. It is a count of all classes

that a class inherits from.

9. Number Of Descendants (NOD) [15]. This metric is also proposed by Li. The metric measures

the number of classes that inherit from a specific class.

www.manaraa.com

23

10. Response For Class (RFC) [5]. Also one of the metrics from the C&K metrics suite, this

metric measures the potential communication between classes. It is a count of all methods in a

class including other methods called by these methods.

11. Data Abstraction Coupling (DAC) [15]. Data Abstraction Coupling is referred to as coupling

through abstract data type and is defined as total number of classes that are used as abstract data

types in the declaration of a data attribute.

12. Specialization Index (SI) [12]. According to Gillibrand et al., this metric gives an indication

of how well a subclass fits a hierarchy in which it is placed. For instance, if a subclass makes less

use of inherited methods and attributes and instead adds several new ones or overrides inherited

methods, then it may suggest that either the parent class does not correctly model the real

concept or the subclass does not belong in that hierarchy. The SI is defined as follows:

 number of overridden methods * class hierarchy nesting level

 SI =

 Total number of methods

13. Inheritance Level Technique (ILT) [24]. Mentioned by Shih et al., this metric attempts to

capture the complexity of inheritance hierarchies. ILT models an inheritance hierarchy using a

directed graph where every node represents a class and edges represent parent-child

relationships. The metric is based on a single unit called unit repeated inheritance (URI). The

URI is defined as a directed acyclic graph that has the same number of edges as node [24]. The

complexity of an inheritance hierarchy can be indicated by value of ILT metric, which is the

summation of URIs at all levels of the hierarchy.

www.manaraa.com

24

CHAPTER 3

STEP/EXPRESS AND AP MODULARIZATION

STEP

Introduction

This section introduces STEP, EXPRESS, the STEP Application Protocol, and their

relevance to this study. Briefly, STEP is an international standard for information interchange

[25]. EXPRESS is a data modeling language provided as part of the STEP standard for

describing the information to be exchanged [10]. The Application Protocol (AP) is a single unit

of information (EXPRESS information model) that is exchanged using STEP [10]. The major

motivation behind this study arises from the need for the design of modular APs. Further details

about STEP, EXPRESS, and APs are provided in the following sections. Before the STEP

standard is discussed, a brief discussion of the problem of data exchange is presented.

The Data Exchange Problem

In the manufacturing and engineering industries, there has always been a need to share

product data. The term product data is used to refer to all information about a company’s

products and processes that are created and managed in a computer system [28]. The product

data describes all information about a product through its life-cycle. Often a company is spread

across different geographical sites, and data need to be exchanged between those sites or

sometimes between a supplier of a product and a user of that product. In the past, lack of data

formats for exchange has resulted in an inability to share data, or in loss of information during

exchange. Information was lost because different parties often implemented different exchange

standards. Even in cases where the same standard was implemented, different subsets of the

standard were implemented in different software applications. Hence translation from one

software application to another resulted in only a part of the information being translated. Some

earlier exchange standards include IGES, DXF, and SET [28]. All these standards attempted to

provide a solution to the data exchange problem by providing a single standard within some

industries. Each standard, however, focused on a limited scope and failed to provide a

www.manaraa.com

25

comprehensive solution to the data exchange problem [21]. For instance, IGES (Initial Graphics

Exchange Standard), developed in the 80s [21], focused only on CAD products. SET (Standard

d’Exchange et de Transfer) was the French response to the data exchange problem, and again its

scope was limited to CAD data.

What Is STEP?

STEP is an acronym for Standard for the Exchange of Product data. STEP is an ISO

standard with designated name ISO 10303: “industrial automation systems — product data

representation and exchange" [10]. The major objective of STEP is to provide a solution to the

data exchange problem faced by CAD/CAM and the manufacturing industries by specifying a

neutral format for exchanging data. STEP provides a standard way for describing product data,

with mechanisms for implementations and testing for conformance. The standard is comprised of

series of parts that are published separately. Each part is numbered and is designed to address a

separate aspect of the standard. The initial parts of STEP were accepted and published as an

international standard in 1994, but the standard continues to evolve.

Key objectives for STEP as given by Fowler [10] include the following:

• Provide a single international standard that covers all aspects of CAD/CAM data exchange.

• Provide a standard way of describing product data throughout its lifecycle, independent of

any computer system.

• Separate the description of data from its implementation to make the standard suitable for

neutral exchange. Separating the description of data from its implementation also will allow

the standard to act as a "basis for shared databases and for long-term archiving." [10].

STEP Architecture And Components

The STEP standard is organized as a multi-part standard that supports the decoupling of

data description from implementation and testing. The complete structure of STEP is shown in

Figure 2. The core architecture of STEP mirrors the three layers in the ANSI/SPARC model

upon which STEP was modeled [10].

The ANSI/SPARC three- layer architecture emphasizes the identification and separation

of three key items in database design. The highest level of the architecture is the application

www.manaraa.com

26

layer, which consists of users’ views of the systems. The next layer is the conceptual or logical

layer. This layer provides an application- independent data models that can be implemented by

different users at the application level. The lowest level of the architecture is the physical layer.

This layer consists of data structures, which implement the conceptua l layer.

The core architecture of STEP can be compared to the ANSI/SPARC three-level

architecture. The Application Protocols represent the specific application views in STEP. The

APs correspond to the application level in ANSI/SPARC three- layer architecture. The Integrated

Generic Resources, which include the new modularized Application Modules (AMs), Integrated

Application Resources (IAR), Integrated Generic Resources (IGR), and Application Interpreted

Constructs (AIC), correspond to the logical layer in the ANSI/SPARC three- level architecture.

Finally, the implementation methods, which provide standard mechanisms for encoding data for

exchange and methods for accessing such data, correspond to the physical layer in the

ANSI/SPARC three-level architecture.

The contents of STEP can also be divided into two major categories: infrastructure and

information models [14]. STEP’s infrastructure consists of Description Methods (Parts 11-19,

including the EXPRESS language), Implementation Methods (Parts 20-29), and Conformance

Testing methods (Parts 30-39). The Implementation Methods describe ways for physically

encoding data for exchange and for providing access to such data in software applications. The

Conformance Testing Methods describe procedures for testing STEP implementations for

conformance to the standard.

www.manaraa.com

27

 Fig. 2: Structure Of The STEP Standard. From http://www.nist.gov.stepdocs/htm

The information models consist of Application Products (APs) and Integrated Resources

for building APs. More detail about AP development is provided in the following sections. The

information models constitute a "set of entities chosen for a specific product, process or

www.manaraa.com

28

industry" [13]. The AP is built from using two sets of resources: Application Resource Model

(ARM), and Generic Resources.

The Application Protocol (AP)

The bulk of the STEP standard is made up of Application Protocols (APs). An AP is the

final product in STEP deve lopment; it is a specialized set of entities with specific business rules

that constrain and define the collection of information that forms the basic unit of exchange in

STEP. Technically, the AP is made up of the Application Activity Model (AAM), the

Application Reference Model (ARM), and the Application Interpreted Model (AIM). The

Application Activity Model describes the activities of the product’s lifecycle [14]. It includes a

high- level description of input, output, and processes for in a particular domain. The Application

Reference Model describes product information needed in the Activity Model; it resembles a

Software Requirements Specification (SRS) in content. The Application Interpreted Model is an

EXPRESS schema that defines a formal information model, which captures everything specified

in the ARM; it specifies all the information that is to be exchanged. A Mapping Table is used to

translate contents of the ARM into generic constructs defined in the Integrated Resources to

produce the AIM. The AP also includes Conformance Classes, which specify the minimum

subset of the AIM that must be implemented in order to conform to the STEP standard.

Resources For AP Development

Another part of the STEP standard is called the Integrated Resources (IR). The IR sub-

layer ensures consistency in APs across different applications by providing standard data

specifications for developing new APs. IR modules can be regarded as building blocks of STEP.

Currently there are three types of resources in STEP. The first set of resources is called the

Generic Resources (GRs). The Generic Resources provide the most generic data specifications in

STEP information models and can be used across all parts of STEP AP development. Another

section of the Integrated Resources is the Application Resources (ARs). Parts in this section are

numbered in the 100s and contain entities that are more application-specific than those in the

Generic Resources. The last set of the Integrated Resources modules is the Application

Interpreted Constructs (AIC). These consist of data specifications that have identical semantics

in two or more applications. For instance, a data specification for a date usually retains the same

www.manaraa.com

29

meaning even in different applications and may in fact be used in different applications. The

AICs are numbered in the 500s.

The AP Development Process

The development of an Application Protocol (AP) in STEP is initiated by industry needs

or by new technologies and techniques [10]. This implies that, in STEP, APs are not developed

without a prior need. This requirement assures that every AP or data in an industry application

that conforms to the STEP standard can be traced to the reason of its existence [10]. The purpose

of an AP is to provide a standard description of an industry application including the scope and

purpose of such application, the activities involved, input and output data, and methods for

exchanging such information. To ensure consistency, the APs are developed by selecting and

reusing standard data specifications or constructs from the Integrated Resources. The term data

specification refers to descriptions that provide facts about an object [10].

The first task in developing an AP is to gather the industry needs, usually from domain

experts. The next step is to develop the APs Application Activity Model (AAM) and the

Application Reference Model (ARM). Next, a Mapping Table is provided to relate the contents

of the ARM (mostly business terms and descriptions) to standard data specifications provided in

the Integrated Resources. This Mapping table is the basis for the Application Interpreted Model

(AIM). The AIM is the final product in AP development, although it is not the AP itself. The

Scope of Application Protocol, Constraints, and Conformance Classes (CC) are added to the

AIM as a final step in the AP development. The Conformance Classes define the minimal subset

of the AIM that must be implemented for conformance to the STEP standard.

EXPRESS

Introduction

EXPRESS (ISO 10303-11) is the designated modeling language for STEP. EXPRESS

constitutes a major part of the Description Methods, which are a fundamental part of the STEP

standard. The role of EXPRESS in STEP is to define the syntax of the information models that

describe data to be exchanged. EXPRESS is an object oriented modeling language. It contains

www.manaraa.com

30

features that are very similar to those found in object-oriented languages like C++. The domain

analysis and the extraction of entities in EXPRESS modeling resemble the activities done when

modeling software using an object-oriented methodology. EXPRESS, however, also supports

constructs for information modeling, including features for creating data models and specifying

rules and constraints independent of implementation. The following is a brief summary of major

features in EXPRESS language.

Features Of EXPRESS

Schema. A schema is the basic building block of EXPRESS models. A schema is a

container for all declarations and definitions that appear in a model.

Data Types. Data types specify the domain

for which instances can assume values. EXPRESS

provides numerous data types, which can be used

in various ways. Attributes and parameters defined

in a schema must have underlying data types that

define their domains.

Simple Data Types. EXPRESS provides simple data types as the basis for defining user-

defined types. They provide the domain for the atomic data that cannot be further subdivided.

The simple data types include NUMBER, REAL, INTEGER, STRING, BOOLEAN, LOGICAL,

and BINARY.

Aggregation Data Types. Aggregation data types, sometimes called collection data types,

define a domain that consists of a collection of values of one simple data type. The size of these

collections can be fixed or varying depending on optional constraint present in the type’s

declaration. The aggregation data types include ARRAY, LIST, BAG, and SET. An ARRAY is

an indexed, unordered collection of elements. Whether the array can contain duplicates or not

SCHEMA test;

TYPE … END_TYPE;

ENTITY … END_ENTITY;

ENTITY … END_ENTITY;

END_SCHEMA

Fig. 3: A Schema In EXPRESS

www.manaraa.com

31

can be specified at declaration using the UNIQUE keyword. A LIST is a totally ordered

collection of elements. Lists may contain duplicates, unless explicitly prevented by the use of the

UNIQUE keyword in the declaration. A

BAG is a collection of unordered elements in

which duplicates are allowed. A SET is unordered

collection of elements in which duplicate instances

are prohibited.

Constructed Data Types. EXPRESS

provides two types of constructed data types. They

are ENUMERATION and SELECT. These types

are part of what EXPRESS calls DEFINED data

types and they are declared by the keyword TYPE.

a) ENUMERATION Type. The ENUMERATION

data type defines an ordered list of names.

b) SELECT Type. SELECT defines a data type

whose domain is a union of the domains of the

types specified in the select list. It is used to define a set of values from which an instance of an

attribute can assume one and only one of those values. The data type defined by SELECT is

usually a generalization of the types specified in the select list. Specified in the select list must be

constructed types that are visible within the scope

of the schema. Figure 5 shows a declaration of

ENUMERATION and SELECT data types.

Named Data Types. In EXPRESS, data

types are used in various ways. Some are used as

underlying data types for attributes. Others are

used for declaring formal parameters and return

types for functions. The only types that can be

declared in a formal specification (in a schema) are

SCHEMA schoolInfo;

 ENTITY student;
 ID : STRING;
 END_ENTITY;

 ENTITY book;
 title : STRING;
 END_ENTITY;

 ENTITY book_shelf;
 books : ARRAY[0:?] OF book;
 END_ENTITY;

 ENTITY bag_pack;
 books : BAG[0:?] OF book;
 END_ENTITY;

 ENTITY organization;
 Members : LIST[1:?] OF student;
 END_ENTITY;

 ENTITY class;
 the_students: SET [1:?] OF students;
 END_ENTITY;

END_SCHEMA;

Fig. 4: Aggregation Types

SCHEMA test;

 TYPE employee = ENUMERATION OF
 (temporary, permanent);
 END_TYPE;

 TYPE contractor = ENUMERATION OF
 (government, private);
 END_TYPE;

 TYPE agent = SELECT
 (employee, contractor);
 END_TYPE;

END_SCHEMA;

Fig. 5: Constructed Types

www.manaraa.com

32

NAMED data types. EXPRESS provides two kinds of named data types: the ENTITY data type

and the DEFINED data type

a) Entity Types. An entity in EXPRESS describes a single concept like a class does in object-

oriented programming. A declaration of an entity contains a list of attributes that describe that

entity. An entity declaration may also include rules

and function calls to constrain instances of

attributes of that entity. Figure 6 shows an entity

declaration in EXPRESS.

b) Defined Types. A defined data type is declared

by the use of the TYPE keyword. A defined data

type allows a designer to define a new type from an existing type by adding constraints and

assigning a new type identifier. ENUMERATION and SELECT types are also part of the

DEFINED types. Figure 7 shows the use of a

defined type that restricts the domain of simple

type based on an INTEGER.

Derived Attributes. Databases, as a rule,

contain some values that can be computed from

other values, and do not need to be stored

physically in the database. For instance, a person’s

age can be computed from the date of birth.

EXPRESS provides a construct for defining a derived attribute. The designer must specify the

data type for the derived attribute as well as the expression or a function call that computes the

value. Figure 8 shows how a derived attribute may be defined in EXPRESS.

SCHEMA studentType;

 ENTITY student;
 ID : STRING;
 Name :STRING;
 SSN : STRING;
 END_ENTITY;

END_SCHEMA;

Fig. 6: Entity Declaration

SCHEMA colorType;

 TYPE color_value = INTEGER
 WHERE (SELF >0) AND (SELF <=255)
 END_TYPE;

 ENTITY color;
 R: color_value;
 G: color_value;
 B: color_value;
 END_ENTITY;

END_SCHEMA;

Fig. 7: Example Use Of Defined Type

www.manaraa.com

33

Rules. In EXPRESS, rules constrain values that attributes may assume. EXPRESS

provides two mechanisms for specifying rules:

local rules and global rules. Also known as

domain rules, local rules are defined inside an

entity or defined type to constrain the domain of

the attributes in that entity or type. An example of

a local rule is given in Figure 9. Global rules are

defined at a global level in the schema (outside all

entities) and are used to constrain a set of entities in the schema.

Functions And Procedures. In EXPRESS,

functions express algorithms that can manipulate

their parameters and return values. Procedures are

used merely to enforce some constraint; no value is

returned. An example of a function definition in

EXPRESS is shown in Figure 10.

Inverse Relationships. In EXPRESS,

relationships between two entities can be

represented by using the type of one entity as an

attribute of another entity. Suppose, for example,

that a student is a member of an organization.

The two entities student and organization

are defined as in Figure 11. Usually only one part

of the relationship is made explicit while the other

part is implicit. For instance, Figure 11 explicitly

shows the link from the student to the organization

by the attribute member_of in entity student. The

implicit relationship between the organization and

SCHEMA saleType;

 ENTITY the_sale;
 sale: REAL;
 tax: REAL;
 DERIVE
 tax_amt: REAL:= sale * tax;
 END_ENTITY;

END_SCHEMA;

Fig. 8: Example Use Of Derived Attribute

SCHEMA dateType;

ENTITY Date;
 month : INTEGER;
 day : INTEGER;
 year : INTEGER;
 WHERE
 mm : month <=12 AND month >0;
 dd : day <=31 AND day >0;
 yy : year >2000;
END_ENTITY; -- end Date

END_SCHEMA;

Fig. 9. Local Rules

SCHEMA functionDef;

 FUNCTION average (var1, var2: NUMBER)
 : NUMBER
 LOCAL:
 sum : NUMBER;
 avg : NUMBER;
 END_LOCAL;

 sum := var1 + var2;
 avg := sum/2;

 RETURN (avg);

 END_FUNCTION;

END_SCHEMA;

Fig. 10: A Simple EXPRESS Function

www.manaraa.com

34

the students can also be made explicit by declaring an attribute in entity organization and using

the INVERSE construct to indicate the reverse

relationship.

 Supertypes, Subtypes, And Inheritance.

EXPRESS allows an inheritance hierarchy to be

defined by the use of the SUPERTYPE and

SUBTYPE keywords. The SUPERTYPE construct

is used to define a supertype entity in an

inheritance hierarchy. In a SUPERTYPE clause,

one specifies all the entities that are subtypes of the

supertype being declared. The SUBTYPE construct defines a subtype entity, i.e. an entity that

inherits from specified set of supertype entitie s.

The SUBTYPE clause must name all the entities

that are supertypes to the defined subtype entity.

Figure 12 shows the use of the SUPERTYPE and

SUBTYPE constructs. EXPRESS also provides

ways to restrict valid instances of entities in an

inheritance hierarchy. For instance, to specify that

a student entity can be undergraduate or a graduate

but not both, the ONEOF construct can be used

with the SUPERTYPE keyword (Figure 12).

Similarly, the ANDOR constraint can be used to

show that a student (graduate or undergraduate)

can also be fulltime or part-time (Figure 13).

Schema Interfacing. In Express, a schema is a container for entities, types, and rules.

Often there is no single context in which all the elements in the schema may be used. Some

definitions, however, may be used more appropriately in some

SCHEMA studentOrg;

 ENTITY student;
 ID : STRING;
 member_of : organization;
 END_ENTITY;

 ENTITY organization;
 name : STRING;
 INVERSE
 members : SET[1:?] OF student FOR
member_of;
 END_ENTITY;

END_SCHEMA;

Fig. 11: An Inverse Relationship

SCHEMA studentSchema1;

ENTITY student SUPERTYPE OF
 (ONEOF (undergrad_student,
graduate_student));

 ID : STRING;
END_ENTITY;

ENTITY undergrad_student SUBTYPE OF
(student);
END_ENTITY;

ENTITY graduate_student SUBTYPE OF
(student);
 isGA : BOOLEAN;
END_ENTITY;

END_SCHEMA;

Fig. 12: Inheritance with ONEOF constraint

www.manaraa.com

35

context than others. Schema interfacing allows for

dedicated contexts to be composed from elements

in other schemas. Schema reuse is achieved

through the use of two EXPRESS constructs: USE

and REFERENCE. These constructs import

definitions from other schemas into new ones.

Entities imported by the USE keyword become

first-class elements in the new schema. These

imported elements behave as if they were

originally defined locally in that schema. Instances

of these elements can independently exist in an

information base defined using this schema. On the

other hand, definitions imported by REFERENCE

become second-class elements in the new schema.

REFERENCED elements cannot have independent

instances in an information base defined using that

schema; any use of instances of items in the referenced schemas must reference instantiated

items in the original schema.

Schema interfacing can be used to create schemas that are tailored to specific contexts by

selecting only relevant entities. One technique for schema interfacing, subtype pruning, is a

method for importing entities without their subtypes. A second form of schema interfacing,

chaining, is the imports definitions into a schema indirectly, by including schemas that also

import other definitions. Chaining is possible because items imported into other schemas with

USE become local to that schema—hence, importable into other schemas. EXPRESS imposes no

limit on how many times a type can be imported.

AP Modularization

Introduction

The Application Protocol (AP) is the basic unit for information exchange in STEP. The

current state of practice has been that when a need arises for a new AP, development begins from

SCHEMA studentSchema2;

 ENTITY student SUPERTYPE OF
 ((ONEOF
 (full_time, part_time))
 ANDOR
 (ONEOF (undergrad_student,
graduate_student)
));

 ID : STRING;
 END_ENTITY;

 ENTITY full_time SUBTYPE OF (student);
 END_ENTITY;

 ENTITY part_time SUBTYPE OF (student);
 END_ENTITY;

 ENTITY undergrad_student SUBTYPE OF
 (student);
 END_ENTITY;

 ENTITY graduate_student SUBTYPE OF
(student);
 isGA : BOOLEAN;
 END_ENTITY;

END_SCHEMA;

Fig. 13: Inheritance With ONEOF And ANDOR

Constraints

www.manaraa.com

36

scratch. Like software modules, existing APs were not designed with reuse in mind; it is

difficult to apply existing modules to new applications. Recent STEP meetings and workshops

have discussed the possibility of creating modules that are generic and designed to allow further

extension and reuse.

Goals Of AP Modularization

The goal of modularized Application Protocols, like in software, is to reduce

development time and effort, which translates to a reduction in cost. The STEP AP initiative

aims to create reusable AP modules by 1) separating

business use from data specification, 2) separating

conformance classes from data specifications, and

3) delaying the definition of scope and domain till a

later stage (usually left for application developers).

Modularization aims to allow what is known as AP

interoperability, which refers to the ability to “reuse

data created by implementation of one AP by an

implementation of another AP” [16].

Structure Of The Modularized AP

A modularized AP is made up .of

Application Modules (AM). The Application

Module is the basic reusable construct in the modularized AP. The AM is a data specification

that contains the Application Reference Model (ARM), Mapping Table (MT), and a Module

Interpreted Model (MIM) [16]. The Mapping Table shows how items in the ARM translate to

generic constructs available in the Integrated Resources [21]. The Module Interpreted Model

(MIM) refers to an AIM for a specific Application Module. Figure 13 shows the structure of the

modularized AP. Unlike the non-modularized AP, the modularized AP does not contain the

ARM, Mapping Table, and the AIM; it uses them by referencing Application Modules. Each AM

contains the ARM, Mapping Table, and MIM.

In the modularized AP, the principal data specification (information model) is the

Application Module. Each Application Module contains an ARM, AIM, and the Mapping Table.

Figure 14: Structure Of A Modularized AP

www.manaraa.com

37

The AMs are designed so that each AM defines an information model for one or more concepts.

For the purpose of reuse, the AMs are designed with different levels of generality ranging from

application specific to very generic. An AM can reference other AMs. In a modularized AP

there is one application specific AM called the “big” AM. The “big” AM references other

generic AMs, which in turn can reference other AMs. An AM may reference another AM for

various reasons. For instance, an Application Module A may reference another Application

Module B to define a specialization of a concept in Application Module A or to define a usage

for an entity in Application Module A [25].

www.manaraa.com

38

CHAPTER 4

METRICS APPLICATION AND SURVEY ANALYSIS

Selected Metrics And Measurement Units

Introduction

One of the goals of this thesis is to be able use SE metrics to evaluate the quality of

EXPRESS database modules. One difficulty with the goal is that software and database are

different domains with their own languages. However, software design and database design

have common goals, like maintainability and reusability. Furthermore, the modeling language

being studied, EXPRESS, provides features that are comparable to features found in modern

object-oriented software design and implementations. These correspondences between

EXPRESS and OO programming languages make it possible to apply some software engineering

metrics to database modules with little or no modifications. If similar metrics that are used in

software engineering can be applied to EXPRESS modules, then AP Modularization can make

use of such metrics.

The nature of existing APs (EXPRESS modules) is the major cause behind AP

Modularization, the basis for this study. Current APs are single, monolithic units that contain all

required definitions, such as entities, types, functions, and procedures, in one single EXPRESS

schema. The monolithic nature of the APs hinders AP reuse. Hence, the purpose of AP

Modularization is to develop APs with smaller, reusable modules (in this case AMs). Before

presenting the metrics to be used, and the measurable units in EXPRESS schemas, the goals of

AP modularization in terms of reuse and how these goals relate to the proposed measurement

model will be described.

The Reuse Model For AP Modularization

The process of developing smaller, independent, and reusable APs in STEP terminology

is called AP Modularization. For the purpose of this research, a simple model, as shown in

Figure 15, is used to show the goal of AP Modularization.

www.manaraa.com

39

 Fig. 15. Reuse Model For AP Modularization

The reuse model identified here shows three different of kinds of reuse in AP development.

These types of reuse are explained below.

Reuse “as-is”. A reusable component of an AP (i.e. AM) can be used without any

change to it. This form of reuse is referred to as Reuse “as-is”. In this research, Reuse “as- is” is

the type of AP reuse being investigated. The survey conducted sought to determine the effect of

coupling on Reuse “as-is”.

Reuse By Extension. A module can also be modified by extending it (adding new items

to the data specification). Here, this kind of reuse is referred to as Reuse By Extension.

Reuse By Specialization. A module can be modified for the purpose of specialization

(add scope or restriction to existing module). This kind of reuse is referred to as Reuse by

Specialization. Figure 13 shows the reuse model from the AP modularization point of view.

Description of Proposed Candidate Metrics

This section lists and describes the actual metrics that will be used in the proposed

measurement model. In addition, the reason for choosing each metric will be provided as well as

how each metric fits in the overall goal of this research.

Data Abstraction Coupling (DAC). In EXPRESS, an attribute may have its type as one of

the EXPRESS base types, often called primitive types: e.g. STRING, INTEGER, and NUMBER.

An attribute may also have its type as a user-defined type. A user-defined type in this case may

www.manaraa.com

40

be an Entity type, or an Enumeration type, or a Select type. DAC is an object-oriented metric

proposed by Li [15]. This metric measures the use of classes as data types in attribute

declarations. The measurement unit is a class. The viewpoint of DAC is that the use of other

classes as types in the declaration of attributes introduces coupling between those classes. In this

research, different versions of DAC will be used. The different forms of DAC that will be used

in this research are listed below.

Data Abstraction Coupling from Entity Types (DAC_ENT). This metric will be used to

determine the number of entities that have other entities as data types in their attribute

declarations.

Data Abstraction Coupling from Enumeration Types (DAC_ENUM). This metric will be

used to determine the number of entities that have Enumeration types as data types in their

attribute declarations.

Data Abstraction Coupling from Select Types (DAC_SEL). This metric will be used to

determine the number of entities that have Select types as data types in their attribute

declarations.

Data Abstraction Coupling from Restricted (Defined) Types (DAC_DEF). This metric

will be used to determine the number of entities that have Restricted types as data types in their

attribute declarations.

Number of Supertypes (N_SUP). N_SUP is based on Li's Number of Ancestors (NAA)

metric. Li's NAA is similar to C&K's DIT but NAA captures exactly which classes can affect a

specific class in a hierarchy. In a complex inheritance hierarchy where a class may inherit from

multiple parents, NAA is useful for tracing all the parents of any given class. The proposed

metric, N_SUP, will be used to count the number of entities that a given entity inherits directly

from. A high value for N_SUP may indicates that a class has a high risk of being affected by a

change in many classes (supertypes).

www.manaraa.com

41

Number of Subtypes (N_SUB). This metric is based on NOD (Number Of Descendants),

an object-oriented metric proposed by Li [15]. NOD is a measure of the breath of an inheritance

hierarchy. It is a count of the immediate children of a class. Like DIT, NOD assumes a view that

the more children a class has, the more likely it is to reuse attributes and methods from the parent

base class. However, a change in the base class affects the children. In this research, N_SUB is

used (instead of NOD) to count the number of entities subclassing directly from another entity.

Versions of N_SUB such as average N_SUB will also be used to evaluate a sample schema.

Depth Of Inheritance (DIT). Originally proposed by Chidamber and Kermerer [5], this

metric measures the length of an inheritance tree from a node to the root (supertype). The

viewpoint is based on the idea that the deeper a class is in an inheritance hierarchy, the greater

the ability to reuse attributes and methods. However, deep inheritance hierarchies introduce

complexity to classes because prior understanding of classes higher in the hierarchy is required

in order to fully understand classes in the lower parts of the hierarchy. Another downside to deep

inheritance hierarchies is that a change high in the hierarchy is more likely to affect classes lower

in the hierarchy. The proposed measurement model is also expanded to show the metrics that are

used in this research as shown in Figure 16.

Depth Of Data Abstraction Coupling (DAC_DEPTH). Attributes that use EXPRESS

base types and Enumeration types as data types involve coupling with EXPRESS primitive

types. This form of coupling is considered negligible in this research. However, attributes that

use Entity types, Select types, and Restricted types as data types become coupled (in a form of

physical dependency) with those types. For instance, if an attribute X uses an Entity type T as a

data type in its declaration, then X becomes physical dependent on entity T (X is coupled to T).

If T is also dependent on another entity Y, for instance, via inheritance relationship, then

attribute X indirectly becomes coupled to Y (transitivity). This form of coupling is measured by

finding the longest path to the last entity type in such a transitive dependency. The metric used

for measuring this form of coupling is called DAC_DEPTH.

www.manaraa.com

42

 Fig. 16: Complete Measurement Model With Metrics

Applying The Metrics

The candidate metrics were applied to a subset of the EXPRESS module AP302 AIM

(ISO 10303-203). This module was chosen for the following reasons. The version of the AP 203

used, besides being current (dated May 2000), also has a reasonable size. Although not too large,

the AP 203 contains all the EXPRESS features that are being sought in this research. Due to its

moderate size, survey participants (mostly students with basic EXPRESS skills) were more

comfortable using it than it would have been with other APs that are published in the STEP

standard.

Types Of Coupling Measured

There are several types of coupling found in EXPRESS modules. However, this research

identified two most common forms of coupling:

• Coupling through data abstraction (DAC)

• Coupling through inheritance (C_INH)

The research focused on these two forms of coupling because in the current un-

modularized APs, Data Abstraction and Inheritance are found in the majority of the type

definitions in the schemas.

www.manaraa.com

43

Coupling Through Data Abstraction (Data Abstraction Coupling - DAC). This type of

coupling occurs when an attribute uses a user-defined type as its data type. In EXPRESS, a user-

defined type can be created by:

1) Using an Entity type (DAC_ENT)

2) Using a Select type (DAC_SEL)

3) Using an Enumeration type (DAC_ENUM)

4) Using Restricted type (DAC_DEF)

Each of these user-defined types can, therefore, result in a data abstraction coupling. Figure 16-

20 illustrates different forms of DAC and how they are measured.

Fig. 17: DAC_DEF

Fig. 18: DAC_DEF

Fig. 19: DAC_ENT

Fig. 20: DAC_ENUM

www.manaraa.com

44

In this research, data abstraction coupling due to the use of each of the four user-defined

types is tested to see if they have any effect on reuse.

Coupling Through Inheritance (C_INH). This type of coupling occurs through

inheritance. In an EXPRESS inheritance, the subtype entity is coupled to the supertype entity by

referencing the supertype in its SUBTYPE clause. The supertype entity may also mention the

names of all subtype entities in its SUPERTYPE clause, resulting in further coupling. Figure 20

illustrates the coupling though inheritance.

 Fig. 21: DAC_SEL

 Fig. 22: Coupling Through Inheritance

www.manaraa.com

45

CHAPTER 5

ANALYSIS

Analysis Of Sample AP

In this research, a sample AP (Appendix A) was selected for study to determine if

coupling has any effects on the use

of EXPRESS schema items.

The candidate metrics were

applied to the sample EXPRESS

schema to determine what features

dominate the schema definitions.

The sample AP was the single

schema AP302 AIM (ISO 10303-

203). The schema was modified to

reduce the size and complexity so that students with minimum EXPRESS skills would be able to

use it. The main features of the AP that were analyzed are use of inheritance and data

abstraction. The following observations resulted from applying the candidate metrics.

Entity types composed 71%

of all type definitions in the schema.

There were 219 attribute types

distributed in the 151 entities found

the schema giving a very low

average of 1.5 attributes per entity.

Of the 151 entities, 43% had no

attributes, while 59.6% had between

one and three attributes; only 17%

of the entities had four or more attributes. The highest number of attribute per entity found in the

schema was six and only one entity had this number.

General Statistics : Type Composition

 Number Percentage

Number of Entities 151 71%

Number of Restricted types 28 13%

Number of Select types 31 14%

Number of Enum types 4 2%

Total 433 100%

 Fig. 23: Type Composition For The Sample Schema

Table 1: General Statistics About The Sample Schema

Type Composition

71%

13%

14% 2%

Number of Entities

Number of Restricted
types

Number of Select types

Number of Enum types

Fig. 23: Type Composition For The Sample Schema

www.manaraa.com

46

The type composition also included 28 Restricted types which makes up about 13% of

the total type composition. Of this 13%, none had more than one level of redefinition. In fact,

over 80% of all the Restricted types were based directly on EXPRESS base types (zero level of

redefinition).

Fourteen percent of the all the type definitions in the schema consist of Select types.

Enumeration types make up 2% of the schema type definitions. In the analysis, it was found that

only 1.8% of attributes used Enumeration types in their definitions, and 2.7% for Select types.

Because Enumeration types do not reference any other types in their definitions, they do not add

any form of coupling to the schema.

Attribute Types And Data Abstraction Coupling

(DAC)

 Data Abstraction Coupling (DAC)

results when attributes use other user-defined

types such as entity types as data types. In the

sample AP, DAC_ENT was found to be the

major form of coupling in the schema.

DAC_ENT causes more physical dependency for entities than any other form of coupling in the

schema. Of the 219 attributes found in the schema, 46% are involved in DAC_ENT (i.e.

attributes that use Entity types as their data types), about 44% use Restricted types as data types.

The remaining 10% use Enumeration types (DAC_ENUM), Select types (DAC_SEL), and

EXPRESS base types as their data types (See Figure 24). In the schema analyzed, 44.5% of all

the attributes had a DAC_DEPTH value of 2 or higher. The average value for DAC_DEPTH is

1.6, which shows that Data Abstraction Coupling in general is low for the schema.

Inheritance

Inheritance is another major cause of coupling in an EXPRESS schema. Entities become

physically and logically dependent on each other through inheritance relationships. The schema

that was analyzed made very little use of inheritance and, hence, coupling resulting from such

relationships is minimal. Although out of the 151 entities in the schema, 62% were involved in

an inheritance relationship, the average depth of inheritance (average DIT) is about one (1.1).

DAC by percentage

2%3%

44%46%

5%

DAC_ENUM

DAC_SEL

DAC_DEF

DAC_ENT

Base type
attributes

 Fig. 24: Data Abstraction By Percentage

www.manaraa.com

47

37.7% of all the entities were not involved in any inheritance relationship. Of the 111 entities

involved in inheritance relationships, 19.2% were supertypes, and 7.3% were root supertypes.

That means all the inheritance hierarchies in the schema are built on 7.3% of the entities. In

terms of multiple inheritance, the majority of the entities in the schema (52%) have only one

subtype, while only about 1 (1.3) % two or more supertypes. The value for DIT (the longest path

from any supertype to a subtype) was found to be 3; the average DIT is 1.1. Table 2 shows the

valued obtained from applying the metrics.

www.manaraa.com

48

Table 2. Values Obtained From Applying The Metrics

Entity Analysis

 DAC_ENT_DEPTH

Avg No. of Attributes/Entity 1.5 Range Frequency %
Avg DIT 1.1 0 7 6.9%
Deepest DIT 3 1 49 48.5%
 2 27 26.7%

DAC # % 3 17 16.8%
DAC ENUM 4 1.8% 4 1 1.0%
DAC SEL 6 2.7% Total 101
DAC DEF 96 43.8%
DAC ENT 101 46.1% No. of Attributes / Entity
Base type attributes 12 5.5% Range Frequency %
 0 43 28.5%
Max DAC_ENT_DEPTH 4 1 to 3 90 59.6%
Max DAC_SEL_DEPTH 3 4 to 6 17 11.3%
Max DAC_DEF_DEPTH 1 6 plus 1 0.7%

Avg DAC_ENT_DEPTH 1.5 No.of Supertypes / entity
Avg DAC_SEL_DEPTH 1.3 Range Frequency %
Avg DAC_ENUM_DEPTH 0.0 0 70 46.4%
Avg DAC_DEF_DEPTH 1.0 1 79 52.3%

Inheritance # % 2 plus 2 1.3%
Total No. of Root Supertypes 11 7.3% 151 100.0%
NSUP 29 19.2%
NSUB 82 54.3% Max path to root
Total No. of Entities with inheritance 94 62.3% Range Frequency
Total No. of Entities without inheritance 40 37.7% 1 39
 2 15
Max No. of Supertypes / Entity 5 3 17
Max No. of Subtypes / Entity 15 4 7

Avg No. of Subtypes / Supertype 3
Number of Complex Entities 2
Max No. of attributes / entity 12

www.manaraa.com

49

Analysis Of Survey Data

In the survey (presented in Appendix F), the sample schema (Appendix A) to which

metrics have been applied was given to students with basic but uniform EXPRESS skills.

Participants were asked to locate and do a manual copying of selected schema items into a new

schema. The survey involved schema items with varying levels of coupling in the form of

inheritance and data abstraction as described in Chapter 4. The time taken to completely locate a

type and all other types that are coupled to it was recorded. The assumption here was that,

provided the search time for all types in the schema is constant and equal, the time required to

locate a type and all other types that are physically dependent (coupled) on that type will be

greater than the time required to locate a type with no physical dependency (coupling). The

survey collected data for the following levels of coupling:

1. DAC level 0: a type is not coupled to any other type;

2. DAC level 1: a type is coupled to only one other type (in a form of physical dependency)

through an attribute;

3. DAC level 2: a type is coupled to two other types (in a form of physical dependency)

through an attribute;

4. DAC level 3: a type is coupled to three other types (in a form of physical dependency)

through an attribute;

Similar categories were used for inheritance. An entity with inheritance level 0 (DIT=0)

means the entity has no inheritance. Inheritance level 1 (DIT=1) means an entity has an

inheritance with depth of one.

In the analysis of the survey data, the lower-tailed method for hypothesis testing was used

to compute the difference in the mean values of the different categories of DAC and inheritance

described above. The statistical method required the mean and the variance to be computed for

each category or level to be compared. The computed values for the mean and variance are

shown in Table 3. Using Equation 1, the test statistics z are computed and shown in Table 4.

Assuming a normal distribution, with a significant level of 0.05, the normal deviate

associated with .05 significant level was found to be 1.96. This means that (using the lower-

tailed method) the difference between any two mean values that is greater than or equal to -1.96

is considered significant and can be used as the basis for rejecting the Null hypothesis, H0, (The

time required to use an existing EXPRESS module does not increase significantly as coupling

www.manaraa.com

50

between the modules increases), and accepting the alternative, H1 (The time required to use an

existing EXPRESS module increases significantly as coupling between the modules increases).

Equation 1. Formula For Computing Normal Deviate For Comparing Means

 Table 3. Mean And Variance For Different Levels Of DAC And Inheritance

DAC_ENT Inheritance DAC_SEL DAC_DEF
Level Mean Variance Level Mean Variance Level Mean Variance Level Mean Variance

L0 2.85 2.99 L1 2.39 3.07 L1 3.25 17.71 L1 2.72 1.88
L1 4.05 8.37 L2 2.70 4.00 L2 4.84 8.22 L2 2.76 2.55
L2 4.30 6.95 L3 3.00 6.24 L3 4.98 16.95 L3 3.08 2.99
L3 6.20 20.04

www.manaraa.com

51

Table 4. Computed Test Statistic z For Different Levels Of DAC And Inheritance

DAC_ENT Inheritance DAC_SEL DAC_DEF
M1 M2 z M1 M2 Z M1 M2 z M1 M2 z
L0 L1 2.8 L1 L2 0.7 L1 L2 2.1 L1 L2 0.1
L0 L2 3.6 L1 L3 1.1 L1 L3 1.9 L1 L3 0.9
L0 L3 5.5 L2 L3 0.5 L2 L3 0.2 L2 L3 1.1
L1 L2 0.5
L1 L3 3.2
L2 L3 2.9

A test statistic z was computed for the mean values that were compared using the

Equation 1. Tables 4 show the means that were compared and the values for the test statistic z.

In Tables 4, the columns M1 and M2 denote the means to be compared. Hence, L0, L1 with a z

value of 2.8 for DAC_ENT means that, 2.8 was found to be standardized difference between

mean values for DAC_ENT level 0 and 1.

Observing the z values for all the comparisons, it is seen that there exists a significant

difference for all the means that were compared. The value for test statistic z falls with the

acceptance region of the lower-tailed test. These results support the main hypothesis H1 and lead

to the rejection of the alternative hypothesis, H0.

www.manaraa.com

52

CHAPTER 6

CONCLUSION

In all the categories of coupling investigated in the survey, DAC_ENT has the greatest

impact on reuse of existing schema items. The time required to use a simple EXPRESS type

increases at a higher rate for DAC_ENT than any other form of coupling investigated. This could

be because in an EXPRESS schema, DAC_ENT can result in a recursive definition as illustrated

below. AàB, BàA. Both A and B are entity types having DAC_ENT. In cases where the level

of DAC is high, it becomes difficult to trace all the types that are involved in a chain of DAC. A

recommendation for designing EXPRESS modules for reuse seeks a reduction of DAC_ENT in

EXPRESS schemas. For instance, an attribute that uses an entity type as its data type may use a

primitive type unless the attribute is composite. If that attribute uses an entity type as its data

type because there is a rule in that entity, then that a rule may be migrated to a global rule. This

may lead to clearer design without loss of semantics. Such a design may be easy to understand

and potentially easy to reuse.

Analysis of the sample schema also reveals that very few instances of DAC_SEL existed

in the schema (i.e. very few attributes used Select types as data types). Despite the minimal use

of Select types as data types (DAC_SEL), the survey results show that Select types bring the

second strongest form of coupling to the schema. This is seen from the increasing mean time

differences between DAC_SEL values as DAC_SEL levels increased. The reason for this

increasing difficulty in using items with DAC_SEL could be due to the content of the Select type

definitions. Select types definitions may include other user-defined types such as Entity types,

Restricted types, Enumeration types, and even other Select types. The other types that are

mentioned in the Select type definition may bring other forms of coupling to the Select type

making it more complicated to use.

Inheritance also brings a modest amount of coupling to the schema. Although the mean

time for using entity types with different level of DIT increased as the depth of inheritance

increased, the increase was not as pronounced as DAC_ENT and DAC_SEL. However,

minimizing inheritance depth may improve reuse of the schema types.

www.manaraa.com

53

In summary, this research has accomplished the following: a model has been established

that predicts the reusability of EXPRESS modules. A relationship between coupling and

reusability of EXPRESS modules has been shown, and a set of metrics has been developed that

measure coupling in EXPRESS modules. This research has provided a foundation for further

research in predicting the reusability of EXPRESS modules.

www.manaraa.com

54

BIBLIOGRAPHY

[1] Alencar P. et al, Formal Specification of Reusable Interface Objects. Proceedings of the

17th international conference on software engineering on Symposium on software

reusability , 1995, pp 88 - 96

[2] Bieman, James M, Kang, Byung-Kyoo. Measuring Design-Level Cohesion. IEEE

Transactions on Software Engineering. Vol. 24, No.2, Feb. 1998

[3] Briand et al. A Unified Framework for coupling Measurement. IEEE Transactions on

Software Engineering. vol. 25, no. 1, Jan-Feb 1998 1999.

[4] Cartwright, Michelle. An Empirical view of inheritance. Information and Sfoftware

Techonolgy. Vol. 40. 1998

[5] Chidamber, Shyam, Kermerer, Chris F. IEEE Transactions on Software Engineering.

vol. 20, no. 6, June 1994.

[6] Dai, We. Development of Reusable Components: Preliminary Experience. Proceedings

of the 17th International Conference on Software Engineering on Symposium on

Software Reusability, 1995, pp. 238 - 246

[7] Daniani E. et al. A Hierarchy-Aware Approach to Faceted Classification of Object-

Oriented Component. ACM Transactions on Software Engineering and Methodology.

vol. 8, no. 3, July 1999, pp. 215-262

[8] Etzkorn, Letha, Bansiya, Jagdish, Davis, Carl. Design and Code Complexity Metrics for

Object-Oriented Classes. Quality Metric for Object-Oriented Design. Journal of Object-

Oriented Programming. April 1999.

[9] Fenton, Norman E., Pfleeger, Shari L. Software Metrics: A Rigorous & Practical

Approach. 2nd ed. PWS, 1997.

[10] Fowler, Julian. STEP for Data Management Exchange and Sharing. 1995.

[11] Frakes, W. Terry, C. Software Reuse: Metrics and Models. ACM Computing Surveys. vol.

28. No. 2, June 1996.

[12] Gillibrand, David, Liu, Kecheng. Quality Metric for Object-Oriented Design. Journal of

Object-Oriented Programming. Jan 1998.

www.manaraa.com

55

[13] Hardwick, Martin. STEP Data Exchange Standard Moves Into Implementation Phase.

http://www.steptools.com/library/stepimpl.html

[14] Loffredo, David. Fundamentals of STEP Implementation. http://www.steptools.com/

[15] Li, Wei. Another Metric Suite for Object–Oriented programming. Journal of Systems and

Software. vol. 44, Feb. 1998

[16] Mohan, Arvind; Nazemetz, John. ISO 10303 Architecture-Working of

ISO/TC184/SC4/WG10

http://www.okstate.edu.ind-engr/step/WEBFILES/papers/Architecture_index.html

 [17] Patel, Sukesh, Chu, William, Baxter, Rich. Measure For Composite Module Cohesion.

Proceedings of the 14th International Conference on Software Engineering, 1992.

[18] Pressman, Roger S. Software Engineering: A Practitioner’s Approach. 4th ed. McGraw-

Hill, 1997

 [19] Poulin et al. The business case for software reuse. IBM Systems Journal. Vol. 32, no. 4.

1993.

[20] Prieto-Diaz, Ruben. Status Report: Software Reusability. IEEE Software. May 1993.

[21] Ravat, Jayesh; Nazemetz, John. Introduction to STEP.

 http://www.okstate.edu/ind-engr/step/WEBFILES/Papers/Introduction_index.html

[22] Reyes, Lorna, Carver, Doris. Predicting Object Reuse Using Metrics. Proceedings, SEKE

’98: The 10th Conference on Software Engineering, June 1998.

[23] Salil Pradihan, Nazemetz, John. STEP Goals

http://www.okstate.edu/ind-engr/step/WEBFILES/Papers/Goals_index.html

[24] Shih, Timothy, Lin, Yule-Chen, Pai, Wen, Wang, Chun-Chia. Object Oriented Design

Complexity based on Inheritance Relationships. International Journal of Software

Engineering. vol. 8, no. 4, 1998.

[25] STEP Modularization Repository http://wg10step.aticorp.org/Modules/index.htm

[26] The STEP Project. http://www.nist.gov/sc4/www/stepdocs.htm

[27] Zage, M. Wayne, Zage, M. Dolores. Evaluating Design Metrics on Large-Scale Software.

IEEE Software. 1993.

[28] Zhang, Jing, Warren, Thomas L. Product Data Exchange

http://www.okstate.edu/ind-engr/step/WEBFILES/Papers/PDE_index.html

www.manaraa.com

APPENDIX A

EXPRESS LISTING FOR EDITED VERSION OF AP 203(ISO-10303-203)

Appendix A provides a listing (in EXPRESS language) of the schema that was used in

this research. A summary of the analysis of this schema is presented in Chapter 5. Appendix B,

C, D, and E provide detailed analysis of the schema. This schema was also used in the survey

(Appendix F). This schema was modified to reduce the size and complexity to fit the scope of

this research.

(* AIM long form FOR ISO 10303-203 amendment 1
 ISO TC184/SC4/WG3 N916
 Larry McKee
 2000-05-04
*)

SCHEMA config_control_design;

 CONSTANT
 dummy_gri : geometric_representation_item := representation_item('') ||
 geometric_representation_item();
 dummy_tri : topological_representation_item := representation_item('')
 || topological_representation_item();
 END_CONSTANT;

 TYPE ahead_or_behind = ENUMERATION OF
 (ahead,
 behind);
 END_TYPE; -- ahead_or_behind

 TYPE approved_item = SELECT
 (product_definition_formation,
 product_definition,
 configuration_effectivity,
);
 END_TYPE; -- approved_item

 TYPE Old_approved_item = SELECT -- KOT
 (product_definition_formation,
 product_definition,
 configuration_effectivity,
 configuration_item,
 security_classification,
 change_request,
 change,
 start_request,
 start_work,
 certification,
 contract);
 END_TYPE; -- approved_item

TYPE approved_source_of_reference = SELECT
 (approved_item , certified_item);
 END_TYPE; -- axis2_placement

www.manaraa.com

57

 TYPE area_measure = REAL;
 END_TYPE; -- area_measure

 TYPE axis2_placement = SELECT
 (axis2_placement_2d,
 axis2_placement_3d);
 END_TYPE; -- axis2_placement

 TYPE b_spline_curve_form = ENUMERATION OF
 (polyline_form,
 circular_arc,
 elliptic_arc,
 parabolic_arc,
 hyperbolic_arc,
 unspecified);
 END_TYPE; -- b_spline_curve_form

 TYPE b_spline_surface_form = ENUMERATION OF
 (plane_surf,
 cylindrical_surf,
 conical_surf,
 spherical_surf,
 toroidal_surf,
 surf_of_revolution,
 ruled_surf,
 generalised_cone,
 quadric_surf,
 surf_of_linear_extrusion,
 unspecified);
 END_TYPE; -- b_spline_surface_form

 TYPE boolean_operand = SELECT
 (solid_model);
 END_TYPE; -- boolean_operand

 TYPE certified_item = SELECT
 (supplied_part_relationship);
 END_TYPE; -- cert ified_item

 TYPE change_request_item = SELECT
 (product_definition_formation);
 END_TYPE; -- change_request_item

 TYPE characterized_definition = SELECT
 (characterized_product_definition,
 shape_definition);
 END_TYPE; -- characterized_definition

 TYPE characterized_product_definition = SELECT
 (product_definition,
 product_definition_relationship);
 END_TYPE; -- characterized_product_definition

 TYPE classified_item = SELECT
 (assembly_component_usage);
 END_TYPE; -- classified_item

 TYPE context_dependent_measure = REAL;
 END_TYPE; -- context_dependent_measure

 TYPE contracted_item = SELECT
 (product_definition_formation);
 END_TYPE; -- contracted_item

 TYPE count_measure = NUMBER;
 END_TYPE; -- count_measure

 TYPE curve_on_surface = SELECT
 (pcurve,
 surface_curve,

www.manaraa.com

58

 composite_curve_on_surface);
 END_TYPE; -- curve_on_surface

 TYPE date_time_item = SELECT
 (product_definition,
 change_request,
 start_request,
 change,
 start_work,
 approval_person_organization,
 contract,
 security_classification,
 certification);
 END_TYPE; -- date_time_item

 TYPE date_time_select = SELECT
 (date,
 local_time,
 date_and_time);
 END_TYPE; -- date_time_select

 TYPE day_in_month_number = INTEGER;
 END_TYPE; -- day_in_month_number

 TYPE day_in_week_number = INTEGER;
 WHERE
 wr1: ((1 <= SELF) AND (SELF <= 7));
 END_TYPE; -- day_in_week_number

 TYPE day_in_year_number = INTEGER;
 END_TYPE; -- day_in_year_number

 TYPE descriptive_measure = STRING;
 END_TYPE; -- descriptive_measure

 TYPE dimension_count = INTEGER;
 WHERE
 wr1: (SELF > 0);
 END_TYPE; -- dimension_count

TYPE formal_approval = SELECT (certification, approval);
END_TYPE;

 TYPE founded_item_select = SELECT
 (founded_item,
 representation_item);
 END_TYPE; -- founded_item_select

TYPE generic_definition = SELECT
 (item_definition_select);
END_TYPE;

 TYPE geometric_set_select = SELECT
 (point,
 curve,
 surface);
 END_TYPE; -- geometric_set_select

 TYPE hour_in_day = INTEGER;
 WHERE
 wr1: ((0 <= SELF) AND (SELF < 24));
 END_TYPE; -- hour_in_day

 TYPE identifier = STRING;
 END_TYPE; -- identifier

 TYPE item_definition_select = SELECT
 (product_definition_select);
 END_TYPE; -- item_definition_select

www.manaraa.com

59

 TYPE knot_type = ENUMERATION OF
 (uniform_knots,
 unspecified,
 quasi_uniform_knots,
 piecewise_bezier_knots);
 END_TYPE; -- knot_type

 TYPE label = STRING;
 END_TYPE; -- label

 TYPE length_measure = REAL;
 END_TYPE; -- length_measure

 TYPE list_of_reversible_topology_item = LIST [0:?] OF
 reversible_topology_item;
 END_TYPE; -- list_of_reversible_topology_item

 TYPE mass_measure = REAL;
 END_TYPE; -- mass_measure

 TYPE measure_value = SELECT
 (length_measure,
 mass_measure,
 plane_angle_measure,
 solid_angle_measure,
 area_measure,
 volume_measure,
 parameter_value,
 context_dependent_measure,
 descriptive_measure,
 positive_length_measure,
 positive_plane_angle_measure,
 count_measure);
 END_TYPE; -- measure_value

 TYPE minute_in_hour = INTEGER;
 WHERE
 wr1: ((0 <= SELF) AND (SELF <= 59));
 END_TYPE; -- minute_in_hour

 TYPE month_in_year_number = INTEGER;
 WHERE
 wr1: ((1 <= SELF) AND (SELF <= 12));
 END_TYPE; -- month_in_year_number

 TYPE parameter_value = REAL;
 END_TYPE; -- parameter_value

 TYPE pcurve_or_surface = SELECT
 (pcurve,
 surface);
 END_TYPE; -- pcurve_or_surface

 TYPE person_organization_select = SELECT
 (person,
 organization,
 person_and_organization);
 END_TYPE; -- person_organization_select

 TYPE plane_angle_measure = REAL;
 END_TYPE; -- plane_angle_measure

 TYPE positive_length_measure = length_measure;
 WHERE
 wr1: (SELF > 0);
 END_TYPE; -- positive_length_measure

 TYPE positive_plane_angle_measure = plane_angle_measure;
 WHERE
 wr1: (SELF > 0);

www.manaraa.com

60

 END_TYPE; -- positive_plane_angle_measure

TYPE product_definition_select = SELECT
 (product_definition_formation);
END_TYPE; -- product_definition_formation

 TYPE second_in_minute = REAL;
 WHERE
 wr1: ((0 <= SELF) AND (SELF < 60));
 END_TYPE; -- second_in_minute

 TYPE set_of_reversible_topology_item = SET [0:?] OF
 reversible_topology_item;
 END_TYPE; -- set_of_reversible_topology_item

 TYPE shape_definition = SELECT
 (product_definition_shape,
 shape_aspect,
 shape_aspect_relationship);
 END_TYPE; -- shape_definition

 TYPE shell = SELECT
 (vertex_shell,
 wire_shell,
 open_shell,
 closed_shell);
 END_TYPE; -- shell

 TYPE si_prefix = ENUMERATION OF
 (exa,
 peta,
 tera,
 giga,
 mega,
 kilo,
 hecto,
 deca,
 deci,
 centi,
 milli,
 micro,
 nano,
 pico,
 femto,
 atto);
 END_TYPE; -- si_prefix

 TYPE si_unit_name = ENUMERATION OF
 (metre,
 gram,
 second,
 ampere,
 kelvin,
 mole,
 candela,
 radian,
 steradian,
 hertz,
 newton,
 pascal,
 joule,
 watt,
 coulomb,
 volt,
 farad,
 ohm,
 siemens,
 weber,
 tesla,
 henry,

www.manaraa.com

61

 degree_celsius,
 lumen,
 lux,
 becquerel,
 gray,
 sievert);
 END_TYPE; -- si_unit_name

 TYPE solid_angle_measure = REAL;
 END_TYPE; -- solid_angle_measure

 TYPE source = ENUMERATION OF
 (made,
 bought,
 not_known);
 END_TYPE; -- source

 TYPE specified_item = SELECT
 (product_definition,
 shape_aspect);
 END_TYPE; -- specified_item

 TYPE start_request_item = SELECT
 (product_definition_formation);
 END_TYPE; -- start_request_item

 TYPE supported_item = SELECT
 (action_directive,
 action,
 action_method);
 END_TYPE; -- supported_item

 TYPE surface_model = SELECT
 (shell_based_surface_model);
 END_TYPE; -- surface_model

 TYPE text = STRING;
 END_TYPE; -- text

 TYPE transformation = SELECT
 (item_defined_transformation,
 functionally_defined_transformation);
 END_TYPE; -- transformation

 TYPE unit = SELECT
 (named_unit);
 END_TYPE; -- unit

 TYPE vector_or_direction = SELECT
 (vector,
 direction);
 END_TYPE; -- vector_or_direction

 TYPE volume_measure = REAL;
 END_TYPE; -- volume_measure

 TYPE week_in_year_number = INTEGER;
 WHERE
 wr1: ((1 <= SELF) AND (SELF <= 53));
 END_TYPE; -- week_in_year_number

 TYPE wireframe_model = SELECT
 (shell_based_wireframe_model,
 edge_based_wireframe_model);
 END_TYPE; -- wireframe_model

 TYPE work_item = SELECT
 (product_definition_formation);
 END_TYPE; -- work_item

www.manaraa.com

62

 TYPE year_number = INTEGER;
 END_TYPE; -- year_number

 ENTITY action;
 name : STRING;
 description : STRING;
 chosen_method : action_method;
 END_ENTITY; -- action

 ENTITY action_assignment
 ABSTRACT SUPERTYPE;
 assigned_action : action;
 END_ENTITY; -- action_assignment

 ENTITY action_directive;
 name : STRING;
 requests : SET [1:?] OF versioned_action_request;
 END_ENTITY; -- action_directive

 ENTITY action_method;
 name : STRING;
 description : STRING;
 consequence : STRING;
 purpose : STRING;
 END_ENTITY; -- action_method

 ENTITY action_request_assignment
 ABSTRACT SUPERTYPE;
 assigned_action_request : versioned_action_request;
 END_ENTITY; -- action_request_assignment

 ENTITY action_request_solution;
 method : action_method;
 request : versioned_action_request;
 END_ENTITY; -- action_request_solution

 ENTITY action_request_status;
 status : label;
 assigned_request : versioned_action_request;
 END_ENTITY; -- action_request_status

 ENTITY action_status;
 status : label;
 assigned_action : executed_action;
 END_ENTITY; -- action_status

 ENTITY address;
 internal_location : OPTIONAL label;
 street_number : OPTIONAL label;
 street : OPTIONAL label;
 postal_box : OPTIONAL label;
 town : OPTIONAL label;
 region : OPTIONAL label;
 postal_code : OPTIONAL label;
 country : OPTIONAL label;
 facsimile_number : OPTIONAL label;
 telephone_number : OPTIONAL label;
 electronic_mail_address : OPTIONAL label;
 telex_number : OPTIONAL label;
 WHERE
 END_ENTITY; -- address

 ENTITY advanced_face
 SUBTYPE OF (face_surface);

 END_ENTITY; -- advanced_face

 ENTITY alternate_product_relationship;
 name : label;
 definition : text;

www.manaraa.com

63

 alternate : product;
 base : product;
 basis : text;
 UNIQUE
 ur1 : alternate, base;
 WHERE
 wr1: (alternate :<>: base);
 END_ENTITY; -- alternate_product_relationship

 ENTITY application_context;
 application : text;
 INVERSE
 context_elements : SET [1:?] OF application_context_element FOR
 frame_of_reference;
 END_ENTITY; -- application_context

 ENTITY application_context_element
 SUPERTYPE OF (ONEOF (product_context,product_definition_context,
 product_concept_context));
 name : label;
 frame_of_reference : application_context;
 END_ENTITY; -- application_context_element

 ENTITY application_protocol_definition;
 status : label;
 application_interpreted_model_schema_name : label;
 application_protocol_year : year_number;
 application : application_context;
 END_ENTITY; -- application_protocol_definition

 ENTITY approval;
 status : approval_status;
 level : STRING;
 END_ENTITY; -- approval

 ENTITY approval_assignment
 ABSTRACT SUPERTYPE;
 assigned_approval : approval;
 END_ENTITY; -- approval_ assignment

 ENTITY approval_date_time;
 date_time : date_time_select;
 dated_approval : approval;
 END_ENTITY; -- approval_date_time

 ENTITY approval_level;
 level : STRING;
 END_ENTITY; -- approval_status

 ENTITY approval_person_organization;
 person_organization : person_organization_select;
 authorized_approval : approval;
 role : approval_role;
 END_ENTITY; -- approval_person_organization

 ENTITY approval_relationship;
 name : STRING;
 description : STRING;
 relating_approval : approval;
 related_approval : approval;
 END_ENTITY; -- approval_relationship

 ENTITY approval_role;
 role : label;
 END_ENTITY; -- approval_role

 ENTITY approval_status;
 name : label;
 END_ENTITY; -- approval_status

www.manaraa.com

64

 ENTITY area_measure_with_unit
 SUBTYPE OF (measure_with_unit);
 WHERE
 wr1: ('CONFIG_CONTROL_DESIGN.AREA_UNIT' IN TYPEOF(SELF\
 measure_with_unit.unit_component));
 END_ENTITY; -- area_measure_with_unit

 ENTITY area_unit
 SUBTYPE OF (named_unit);
 END_ENTITY; -- area_unit

 ENTITY assembly_component_usage
 SUPERTYPE OF (ONEOF (next_assembly_usage_occurrence,
 specified_higher_usage_occurrence, promissory_usage_occurrence))

 SUBTYPE OF (product_definition_usage);
 reference_designator : OPTIONAL identifier;
 END_ENTITY; -- assembly_component_usage

 ENTITY assembly_component_usage_substitute;
 name : label;
 definition : text;
 base : assembly_component_usage;
 substitute : assembly_component_usage;
 UNIQUE
 ur1 : base, substitute;
 WHERE
 wr1: (base.relating_product_definition :=: substitute.
 relating_product_definition);
 wr2: (base :<>: substitute);
 END_ENTITY; -- assembly_component_usage_substitute

 ENTITY b_spline_curve_with_knots
 SUBTYPE OF (b_spline_curve);
 knot_multiplicities : LIST [2:?] OF INTEGER;
 knots : LIST [2:?] OF parameter_value;
 knot_spec : knot_type;
 DERIVE
 upper_index_on_knots : INTEGER := SIZEOF(knots);
 WHERE
 wr1: constraints_param_b_spline(degree,upper_index_on_knots,
 upper_index_on_control_points,knot_multiplicities,knots);
 wr2: (SIZEOF(knot_multiplicities) = upper_index_on_knots);
 END_ENTITY; -- b_spline_curve_with_knots

 ENTITY bounded_curve
 SUPERTYPE OF (ONEOF (polyline,b_spline_curve,trimmed_curve,
 bounded_pcurve,bounded_surface_curve,composite_curve))
 SUBTYPE OF (curve);
 END_ENTITY; -- bounded_curve

 ENTITY bounded_pcurve
 SUBTYPE OF (pcurve, bounded_curve);
 WHERE
 wr1: ('CONFIG_CONTROL_DESIGN.BOUNDED_CURVE' IN TYPEOF(SELF\pcurve.
 reference_to_curve.items[1]));
 END_ENTITY; -- bounded_pcurve

 ENTITY bounded_surface
 SUPERTYPE OF (ONEOF (b_spline_surface,rectangular_trimmed_surface,
 curve_bounded_surface,rectangular_composite_surface))
 SUBTYPE OF (surface);
 END_ENTITY; -- bounded_surface

 ENTITY calendar_date
 SUBTYPE OF (date);
 day_component : day_in_month_number;
 month_component : month_in_year_number;
 WHERE

www.manaraa.com

65

 wr1: valid_calendar_date(SELF);
 END_ENTITY; -- calendar_date

 ENTITY cartesian_point
 SUBTYPE OF (point);
 coordinates : LIST [1:3] OF length_measure;
 END_ENTITY; -- cartesian_point

 ENTITY cc_design_approval
 SUBTYPE OF (approval_assignment);
 items : SET [1:?] OF approved_item;
 END_ENTITY; -- cc_design_approval

 ENTITY cc_design_certification
 SUBTYPE OF (certification_assignment);
 items : SET [1:?] OF certified_item;
 END_ENTITY; -- cc_design_certification

 ENTITY cc_design_contract
 SUBTYPE OF (contract_assignment);
 items : SET [1:?] OF contracted_item;
 END_ENTITY; -- cc_design_contract

 ENTITY cc_design_date_and_time_assignment
 SUBTYPE OF (date_and_time_assignment);
 items : SET [1:?] OF date_time_item;
 WHERE
 wr1: cc_design_date_time_correlation(SELF);
 END_ENTITY; -- cc_design_date_and_time_assignment

 ENTITY certification;
 name : label;
 purpose : text;
 kind : certification_type;
 END_ENTITY; -- certification

 ENTITY certification_assignment
 ABSTRACT SUPERTYPE;
 assigned_certification : certification;
 END_ENTITY; -- certification_assignment

 ENTITY certification_type;
 description : label;
 END_ENTITY; -- certification_type

 ENTITY change
 SUBTYPE OF (action_assignment);
 items : SET [1:?] OF work_item;
 END_ENTITY; -- change

 ENTITY change_request
 SUBTYPE OF (action_request_assignment);
 items : SET [1:?] OF change_request_item;
 END_ENTITY; -- change_request

 ENTITY chosen_action;
 action : directed_action;
 END_ENTITY; -- chosen_action

 ENTITY circle
 SUBTYPE OF (conic);
 radius : positive_length_measure;
 END_ENTITY; -- circle

 ENTITY closed_shell
 SUBTYPE OF (connected_face_set);
 END_ENTITY; -- closed_shell

 ENTITY configuration_design;

www.manaraa.com

66

 configuration : configuration_item;
 design : product_definition_formation;
 UNIQUE
 ur1 : configuration, design;
 END_ENTITY; -- configuration_design

 ENTITY configuration_effectivity
 SUBTYPE OF (product_definition_effectivity);
 configuration : configuration_design;
 UNIQUE
 ur1 : configuration, usage, id;
 WHERE
 wr1: ('CONFIG_CONTROL_DESIGN.PRODUCT_DEFINITION_USAGE' IN TYPEOF(
 SELF\product_definition_effectivity.usage));
 END_ENTITY; -- configuration_effectivity

 ENTITY configuration_item;
 id : identifier;
 name : label;
 description : OPTIONAL text;
 item_concept : product_concept;
 purpose : OPTIONAL label;
 UNIQUE
 ur1 : id;
 END_ENTITY; -- configuration_item

 ENTITY conic
 SUPERTYPE OF (ONEOF (circle,ellipse,hyperbola,parabola))
 SUBTYPE OF (curve);
 position : axis2_placement;
 END_ENTITY; -- conic

 ENTITY conical_surface
 SUBTYPE OF (elementary_surface);
 radius : length_measure;
 semi_angle : plane_angle_measure;
 WHERE
 wr1: (radius >= 0);
 END_ENTITY; -- conical_surface

 ENTITY contract;
 name : STRING;
 purpose : STRING;
 kind : contract_type;
 END_ENTITY; -- contract

 ENTITY contract_assignment
 ABSTRACT SUPERTYPE;
 assigned_contract : contract;
 END_ENTITY; -- contract_assignment

 ENTITY contract_type;
 description : STRING;
 END_ENTITY; -- contract_type

 ENTITY conversion_based_unit
 SUBTYPE OF (named_unit);
 name : label;
 conversion_factor : measure_with_unit;
 END_ENTITY; -- conversion_based_unit

 ENTITY coordinated_universal_time_offset;
 hour_offset : hour_in_day;
 minute_offset : OPTIONAL minute_in_hour;
 sense : ahead_or_behind;
 END_ENTITY; -- coordinated_universal_time_offset

 ENTITY curve
 SUPERTYPE OF (ONEOF (line,conic,pcurve,surface_curve,offset_curve_3d,
 curve_replica))

www.manaraa.com

67

 SUBTYPE OF (geometric_representation_item);
 END_ENTITY; -- curve

 ENTITY curve_bounded_surface
 SUBTYPE OF (bounded_surface);
 basis_surface : surface;
 boundaries : SET [1:?] OF boundary_curve;
 implicit_outer : BOOLEAN;
 END_ENTITY; -- curve_bounded_surface

 ENTITY date
 SUPERTYPE OF (ONEOF (calendar_date,ordinal_date,
 week_of_year_and_day_date));
 year_component : year_number;
 END_ENTITY; -- date

 ENTITY date_and_time;
 date_component : date;
 time_component : local_time;
 END_ENTITY; -- date_and_time

 ENTITY date_and_time_assignment
 ABSTRACT SUPERTYPE;
 assigned_date_and_time : date_and_time;
 role : date_time_role;
 END_ENTITY; -- date_and_time_assignment

 ENTITY date_time_role;
 name : label;
 END_ENTITY; -- date_time_role

 ENTITY dated_effectivity
 SUBTYPE OF (effectivity);
 effectivity_start_date : date_and_time;
 effectivity_end_date : OPTIONAL date_and_time;
 END_ENTITY; -- dated_effectivity

 ENTITY degenerate_pcurve
 SUBTYPE OF (point);
 basis_surface : surface;
 reference_to_curve : definitional_representation;
 WHERE
 wr1: (SIZEOF(reference_to_curve\representation.items) = 1);
 wr2: ('CONFIG_CONTROL_DESIGN.CURVE' IN TYPEOF(reference_to_curve\
 representation.items[1]));
 wr3: (reference_to_curve\representation.items[1]\
 geometric_representation_item.dim = 2);
 END_ENTITY; -- degenerate_pcurve

 ENTITY directed_action
 directive : action_directive;
 END_ENTITY; -- directed_action

 ENTITY document;
 id : identifier;
 name : label;
 description : text;
 kind : document_type;
 UNIQUE
 ur1 : id;
 END_ENTITY; -- document

 ENTITY document_reference
 ABSTRACT SUPERTYPE;
 assigned_document : document;
 source : label;
 END_ENTITY; -- document_reference

 ENTITY document_relationship;
 name : label;

www.manaraa.com

68

 description : text;
 relating_document : document;
 related_document : document;
 END_ENTITY; -- document_relationship

 ENTITY document_type;
 product_data_type : label;
 END_ENTITY; -- document_type

 ENTITY document_usage_constraint;
 source : document;
 subject_element : label;
 subject_element_value : text;
 END_ENTITY; -- document_usage_constraint

 ENTITY document_with_class
 SUBTYPE OF (document);
 class : identifier;
 END_ENTITY; -- document_with_class

 ENTITY edge
 SUPERTYPE OF (ONEOF (edge_curve,oriented_edge))
 SUBTYPE OF (topological_representation_item);
 edge_start : vertex;
 edge_end : vertex;
 END_ENTITY; -- edge

 ENTITY effectivity
 SUPERTYPE OF (ONEOF (serial_numbered_effectivity,dated_effectivity,
 lot_effectivity));
 id : identifier;
 END_ENTITY; -- effectivity

 ENTITY elementary_surface
 SUPERTYPE OF (ONEOF (plane,cylindrical_surface,conical_surface,
 spherical_surface,toroidal_surface))
 SUBTYPE OF (surface);
 position : axis2_placement_3d;
 END_ENTITY; -- elementary_surface

 ENTITY ellipse;
 semi_axis_1 : positive_plane_angle_measure;
 semi_axis_2 : positive_plane_angle_measure;
 END_ENTITY; -- ellipse

 ENTITY evaluated_degenerate_pcurve
 SUBTYPE OF (degenerate_pcurve);
 equivalent_point : cartesian_point;
 END_ENTITY; -- evaluated_degenerate_pcurve

 ENTITY executed_action
 SUBTYPE OF (action);
 END_ENTITY; -- executed_action

 ENTITY face
 SUPERTYPE OF (ONEOF (face_surface,oriented_face))
 SUBTYPE OF (topological_representation_item);
 bounds : SET [1:?] OF face_bound;
 WHERE
 wr1: (NOT mixed_loop_type_set(list_to_set(list_face_loops(SELF))));
 wr2: (SIZEOF(QUERY (temp <* bounds | (
 'CONFIG_CONTROL_DESIGN.FACE_OUTER_BOUND' IN TYPEOF(temp))))
 <= 1);
 END_ENTITY; -- face

 ENTITY face_bound
 SUBTYPE OF (topological_representation_item);
 bound : loop;
 orientation : BOOLEAN;
 END_ENTITY; -- face_bound

www.manaraa.com

69

 ENTITY face_outer_bound
 SUBTYPE OF (face_bound);
 END_ENTITY; -- face_outer_bound

 ENTITY face_surface
 SUBTYPE OF (face, geometric_representation_item);
 face_geometry : surface;
 same_sense : BOOLEAN;

 END_ENTITY; -- faceted_brep_shape_representation

 ENTITY founded_item;
 END_ENTITY; -- founded_item

ENTITY geometric_representation_context
 SUBTYPE OF (representation_context);
 coordinate_space_dimension : dimension_count;
 END_ENTITY; -- geometric_representation_context
 ENTITY geometric_representation_item
 SUPERTYPE OF (ONEOF (point,direction,vector,placement,
 cartesian_transformation_operator,curve,surface,edge_curve,
 face_surface,poly_loop,vertex_point,solid_model,
 shell_based_surface_model,shell_based_wireframe_model,
 edge_based_wireframe_model,geometric_set))
 SUBTYPE OF (representation_item);
 DERIVE
 dim : dimension_count := dimension_of(SELF);
END_ENTITY; -- geometric_representation_item

 ENTITY geometric_set
 SUPERTYPE OF (geometric_curve_set)
 SUBTYPE OF (geometric_representation_item);
 elements : SET [1:?] OF geometric_set_select;
 END_ENTITY; -- geometric_set

 ENTITY hyperbola
 SUBTYPE OF (conic);
 semi_axis : positive_length_measure;
 semi_imag_axis : positive_length_measure;
 END_ENTITY; -- hyperbola

 ENTITY length_measure_with_unit
 SUBTYPE OF (measure_with_unit);
 WHERE
 wr1: ('CONFIG_CONTROL_DESIGN.LENGTH_UNIT' IN TYPEOF(SELF\
 measure_with_unit.unit_component));
 END_ENTITY; -- length_measure_with_unit

 ENTITY line
 SUBTYPE OF (curve);
 pnt : cartesian_point;
 dir : vector;
 WHERE
 wr1: (dir.dim = pnt.dim);
 END_ENTITY; -- line

 ENTITY loop
 SUPERTYPE OF (ONEOF (vertex_loop,edge_loop,poly_lo op))
 SUBTYPE OF (topological_representation_item);
 END_ENTITY; -- loop

 ENTITY lot_effectivity
 SUBTYPE OF (effectivity);
 effectivity_lot_id : identifier;
 effectivity_lot_size : measure_with_unit;
 END_ENTITY; -- lot_effectivity

www.manaraa.com

70

 ENTITY mass_measure_with_unit
 SUBTYPE OF (measure_with_unit);
 WHERE
 wr1: ('CONFIG_CONTROL_DESIGN.MASS_UNIT' IN TYPEOF(SELF\
 measure_with_unit.unit_component));
 END_ENTITY; -- mass_measure_with_unit

ENTITY measure_with_unit;
 value_component : measure_value;
 unit_component : unit;
 WHERE
 wr1: valid_units(SELF);
 END_ENTITY; -- measure_with_unit

 ENTITY next_assembly_usage_occurrence
 SUBTYPE OF (assembly_component_usage);
 END_ENTITY; -- next_assembly_usage_occurrence

 ENTITY organization;
 id : OPTIONAL identifier;
 name : label;
 description : text;
 END_ENTITY; -- organization

 ENTITY parabola
 SUBTYPE OF (conic);
 focal_dist : length_measure;
 WHERE
 wr1: (focal_dist <> 0);
 END_ENTITY; -- parabola

 ENTITY parametric_representation_context
 SUBTYPE OF (representation_context);
 END_ENTITY; -- parametric_representation_context

 ENTITY path
 SUPERTYPE OF (ONEOF (edge_loop,oriented_ path))
 SUBTYPE OF (topological_representation_item);
 edge_list : LIST [1:?] OF UNIQUE oriented_edge;
 WHERE
 wr1: path_head_to_tail(SELF);
 END_ENTITY; -- path

 ENTITY pcurve
 SUBTYPE OF (curve);
 basis_surface : surface;
 reference_to_curve : definitional_representation;
 WHERE
 wr1: (SIZEOF(reference_to_curve\representation.items) = 1);
 wr2: ('CONFIG_CONTROL_DESIGN.CURVE' IN TYPEOF(reference_to_curve\
 representation.items[1]));
 wr3: (reference_to_curve\representation.items[1]\
 geometric_representation_item.dim = 2);
 END_ENTITY; -- pcurve

 ENTITY person;
 id : identifier;
 last_name : OPTIONAL label;
 first_name : OPTIONAL label;
 middle_names : OPTIONAL LIST [1:?] OF label;
 prefix_titles : OPTIONAL LIST [1:?] OF label;
 suffix_titles : OPTIONAL LIST [1:?] OF label;
 UNIQUE
 ur1 : id;
 WHERE
 wr1: (EXISTS(last_name) OR EXISTS(first_name));
 END_ENTITY; -- person

 ENTITY person_and_organization;

www.manaraa.com

71

 the_person : person;
 the_organization : organization;
 END_ENTITY; -- person_and_organization

 ENTITY person_and_organization_assignment
 ABSTRACT SUPERTYPE;
 assigned_person_and_organization : person_and_organization;
 role : person_and_organization_role;
 END_ENTITY; -- person_and_organization_assignment

 ENTITY person_and_organization_role;
 name : label;
 END_ENTITY; -- person_and_organization_role

 ENTITY personal_address
 SUBTYPE OF (address);
 people : SET [1:?] OF person;
 description : text;
 END_ENTITY; -- personal_address

 ENTITY placement
 SUPERTYPE OF (ONEOF (axis1_placement,axis2_placement_2d,
 axis2_placement_3d))
 SUBTYPE OF (geometric_representation_item);
 location : cartesian_point;
 END_ENTITY; -- placement

 ENTITY plane
 SUBTYPE OF (elementary_surface);
 END_ENTITY; -- plane

 ENTITY plane_angle_measure_with_unit
 SUBTYPE OF (measure_with_unit);
 WHERE
 wr1: ('CONFIG_CONTROL_DESIGN.PLANE_ANGLE_UNIT' IN TYPEOF(SELF\
 measure_with_unit.unit_component));
 END_ENTITY; -- plane_angle_measure_with_unit

 ENTITY point
 SUPERTYPE OF (ONEOF (cartesian_point,point_on_curve,point_on_surface,
 point_replica,degenerate_pcurve))
 SUBTYPE OF (geometric_representation_item);
 END_ENTITY; -- point

 ENTITY point_on_curve
 SUBTYPE OF (point);
 basis_curve : curve;
 point_parameter : parameter_value;
 END_ENTITY; -- point_on_curve

 ENTITY product;
 id : STRING;
 name : STRING;
 description : STRING;
 frame_of_reference : SET [1:?] OF product_context;
 UNIQUE
 ur1 : id;
 END_ENTITY; -- product

 ENTITY product_category;
 name : STRING;
 description : OPTIONAL STRING;
 END_ENTITY; -- product_category

 ENTITY product_category_relationship;
 name : label;
 description : text;
 category : product_category;
 sub_category : product_category;
 WHERE

www.manaraa.com

72

 wr1: acyclic_product_category_relationship(SELF,[SELF.sub_category]);
 END_ENTITY; -- product_category_relationship

 ENTITY product_concept;
 id : STRING;
 name : STRING;
 description : STRING;
 market_context : product_concept_context;
 UNIQUE
 ur1 : id;
 END_ENTITY; -- product_concept

 ENTITY product_concept_context;
 market_segment_type : STRING;
 END_ENTITY; -- product_concept_context

 ENTITY product_context
 SUBTYPE OF (application_context_element);
 discipline_type : label;
 END_ENTITY; -- product_context

 ENTITY product_definition;
 id : identifier;
 description : text;
 formation : product_definition_formation;
 frame_of_reference : product_definition_context;
 END_ENTITY; -- product_definition

 ENTITY product_definition_context
 SUBTYPE OF (application_context_element);
 life_cycle_stage : label;
 END_ENTITY; -- product_definition_context

 ENTITY product_definition_effectivity
 SUBTYPE OF (effectivity);
 usage : product_definition_relationship;
 UNIQUE
 ur1 : usage, id;
 END_ENTITY; -- product_definition_effectivity

 ENTITY product_definition_formation;
 id : STRING;
 description : SRING;
 END_ENTITY; -- product_definition_formation

 ENTITY product_definition_relationship;
 id : identifier;
 name : label;
 description : text;
 relating_product_definition : product_definition;
 related_product_definition : product_definition;
 END_ENTITY; -- product_definition_relationship

 ENTITY product_definition_shape
 SUBTYPE OF (property_definition);
 UNIQUE
 ur1 : definition;
 WHERE
 wr1: (NOT ('CONFIG_CONTROL_DESIGN.SHAPE_DEFINITION' IN TYPEOF(SELF\
 property_definition.definition)));
 END_ENTITY; -- product_definition_shape

 ENTITY product_definition_usage
 SUPERTYPE OF (assembly_component_usage)
 SUBTYPE OF (product_definition_relationship);
 UNIQUE
 ur1 : id, relating_product_definition, related_product_definition;
 WHERE
 wr1: acyclic_product_definition_relationship(SELF,[SELF\

www.manaraa.com

73

 product_definition_relationship.related_product_definition],
 'CONFIG_CONTROL_DESIGN.PRODUCT_DEFINITION_USAGE');
 END_ENTITY; -- product_definition_usage

ENTITY product_related_product_category;
 the_product: product;
END_ENTITY; -- product_related_product_category

 ENTITY property_definition;
 name : label;
 description : text;
 definition : characterized_definition;
 END_ENTITY; -- property_definition

 ENTITY property_definition_representation;
 definition : property_definition;
 used_representation : representation;
 END_ENTITY; -- property_definition_representation

 ENTITY representation;
 name : label;
 items : SET [1:?] OF representation_item;
 context_of_items : representation_context;
 END_ENTITY; -- representation

 ENTITY representation_context;
 context_identifier : identifier;
 context_type : text;
 INVERSE
 representations_in_context : SET [1:?] OF representation FOR
 context_of_items;
 END_ENTITY; -- representation_context

 ENTITY representation_item;
 name : label;
 WHERE
 wr1: (SIZEOF(using_representations(SELF)) > 0);
 END_ENTITY; -- representation_item

 ENTITY security_classification_level;
 name : label;
 END_ENTITY; -- security_classification_level

 ENTITY serial_numbered_effectivity
 SUBTYPE OF (effectivity);
 effectivity_start_id : identifier;
 effectivity_end_id : OPTIONAL identifier;
 END_ENTITY; -- serial_numbered_effectivity

 ENTITY shape_aspect;
 name : label;
 description : text;
 of_shape : product_definition_shape;
 product_definitional : LOGICAL;
 END_ENTITY; -- shape_aspect

 ENTITY shape_definition_representation
 SUBTYPE OF (property_definition_representation);
 END_ENTITY; -- shape_definition_representation

 ENTITY shape_representation
 SUBTYPE OF (representation);
 END_ENTITY; -- shape_representation

 ENTITY shape_representation_relationship
 SUBTYPE OF (representation_relationship);
 WHERE
 wr1: ('CONFIG_CONTROL_DESIGN.SHAPE_REPRESENTATION' IN (TYPEOF(SELF\
 representation_relationship.rep_1) + TYPEOF(SELF\

www.manaraa.com

74

 representation_relationship.rep_2)));
 END_ENTITY; -- shape_representation_relationship

 ENTITY si_unit
 SUBTYPE OF (named_unit);
 prefix : OPTIONAL si_prefix;
 name : si_unit_name;
 DERIVE
 SELF\named_unit.dimensions : dimensional_exponents :=
 dimensions_for_si_unit(SELF.name);
 END_ENTITY; -- si_unit

 ENTITY solid_angle_measure_with_unit
 SUBTYPE OF (measure_with_unit);
 WHERE
 wr1: ('CONFIG_CONTROL_DESIGN.SOLID_ANGLE_UNIT' IN TYPEOF(SELF\
 measure_with_unit.unit_component));
 END_ENTITY; -- solid_angle_measure_with_unit

 ENTITY solid_model
 SUPERTYPE OF (manifold_solid_brep)
 SUBTYPE OF (geometric_representation_item);
 END_ENTITY; -- solid_model

 ENTITY specified_higher_usage_occurrence
 SUBTYPE OF (assembly_component_usage);
 upper_usage : assembly_component_usage;
 next_usage : next_assembly_usage_occurrence;
 UNIQUE
 ur1 : upper_usage, next_usage;
 END_ENTITY; -- specified_higher_usage_occurrence

 ENTITY spherical_surface
 SUBTYPE OF (elementary_surface);
 radius : positive_length_measure;
 END_ENTITY; -- spherical_surface

 ENTITY start_request
 SUBTYPE OF (action_request_assignment);
 items : SET [1:?] OF start_request_item;
 END_ENTITY; -- start_request

 ENTITY start_work
 SUBTYPE OF (action_assignment);
 items : SET [1:?] OF work_item;
 END_ENTITY; -- start_work

 ENTITY supplied_part_relationsh ip;
 END_ENTITY; -- supplied_part_relationship

 ENTITY surface
 SUPERTYPE OF (ONEOF (elementary_surface,swept_surface,bounded_surface,
 offset_surface,surface_replica))
 SUBTYPE OF (geometric_representation_item);
 END_ENTITY; -- surface

 ENTITY surface_replica
 SUBTYPE OF (surface);
 parent_surface : surface;
 transformation : cartesian_transformation_operator_3d;
 WHERE
 wr1: acyclic_surface_replica(SELF,parent_surface);
 END_ENTITY; -- surface_replica

 ENTITY topological_representation_item
 SUPERTYPE OF (ONEOF (vertex,edge,face_bound,face,vertex_shell,

www.manaraa.com

75

 wire_shell,connected_edge_set,connected_face_set,loop ANDOR path))
 SUBTYPE OF (representation_item);
 END_ENTITY; -- topological_representation_item

 ENTITY toroidal_surface
 SUBTYPE OF (elementary_surface);
 major_radius : positive_length_measure;
 minor_radius : positive_length_measure;
 END_ENTITY; -- toroidal_surface

 ENTITY uniform_curve
 SUBTYPE OF (b_spline_curve);
 END_ENTITY; -- uniform_curve

 ENTITY uniform_surface
 SUBTYPE OF (b_spline_surface);
 END_ENTITY; -- uniform_surface

 ENTITY valid_reference_source;
 source: approved_source_of_reference;
 END_ENTITY; -- uniform_surface

 ENTITY vector
 SUBT YPE OF (geometric_representation_item);
 orientation : direction;
 magnitude : length_measure;
 WHERE
 wr1: (magnitude >= 0);
 END_ENTITY; -- vector

 ENTITY versioned_action_request;
 id : STRNG;
 version : STRING;
 END_ENTITY; -- versioned_action_request

 ENTITY vertex
 SUBTYPE OF (topological_representation_item);
 END_ENTITY; -- vertex

 ENTITY vertex_loop
 SUBTYPE OF (loop);
 loop_vertex : vertex;
 END_ENTITY; -- vertex_loop

 ENTITY vertex_point
 SUBTYPE OF (vertex, geometric_representation_item);
 vertex_geometry : point;
 END_ENTITY; -- vertex_point

END_SCHEMA; -- config_control_design

www.manaraa.com

76

APPENDIX B

ANALYSIS OF SCHEMA AP 203 (ENTITY TYPES)

This Appendix provides the result of the analysis of schema in Appendix A. In this

Appendix, the analysis of Entity types and Inheritance is presented. In the table below, the first

and second columns tell if the entity is a supertype or subtype respectively. The third column,

Root tells whether or not the entity is a root supertype. Num Sub and Num Super give the number

of subtypes and supertypes respectively for that entity. Max DIT is the longest path from the

entity to its subtypes. Max Super_Path is longest path from the entity to its supertypes. Max

DAC_Path is the longest path (for attributes in this in the entity) from an attribute to its

underlying type.

 super sub Num Num Max Max Max
 Entity type? type? Root? Sub Super DIT Super_Path DAC_Path
action Y N Y 1 0 1 0 1
action_assigment Y N Y 1 0 1 0 0
action_directive N N N/A 0 0 0 0 1
action_method N N N/A 0 0 0 0 0
action_request_assignment Y N Y 2 0 0 0 1
action_request_solution N N N/A 0 0 0 0 1
action_request_status N N N/A 0 0 0 0 1
action_status N N N/A 0 0 0 0 1
address Y N Y 1 0 1 0 1
advanced_face N Y N/A 0 1 0 4 0
alternate_product_relationship N N N/A 0 0 0 0 2
application_context N N N/A 0 0 0 0 3
application_context_element Y N Y 3 0 1 0 2
application_protocol_definition N N N/A 0 0 0 0 3
approval N N N/A 0 0 0 0 2
approval_assignment Y N Y 1 0 1 0 3
approval_date_time N N N/A 0 0 0 0 3
approval_level N N N/A 0 0 0 0 0
approval_person_organization N N N/A 0 0 0 0 3
approval_relationship N N N/A 0 0 0 0 3
approval_role N N N/A 0 0 0 0 1
approval_status N N N/A 0 0 0 0 1
area_measure_with_unit N Y N/A 0 1 0 1 0
area_unit N Y N/A 0 1 0 1 0
assembly_component_usage Y Y N 3 1 1 2 1
assembly_component_usage_substitute N N N/A 0 0 0 0 2
b_spline_curve_with_knots N Y N/A 1 0 0 1 1

www.manaraa.com

77

 super sub Num Num Max MAX Max
 Entity type? type? root? Sub Super DIT Super_Path DAC Path
bounded_curve Y Y N 5 1 1 3 0
bounded_pcurve N Y N/A 0 2 0 4 0
bounded_surface Y Y N 4 1 1 3 0
calendar_date N Y N/A 0 1 0 1 1
cartesian_point N Y N/A 0 1 0 3 1
cc_design_approval N Y N/A 0 1 0 1 1
cc_design_certification N Y N/A 0 1 0 1 1
cc_design_contract N Y N/A 0 1 0 1 1
cc_design_date_and_time_assignment N Y N/A 0 1 0 1 1
certification N N N/A 0 0 0 0 2
certification_assignment Y N Y 1 0 2 0 3
certification_type N N N/A 0 0 0 0 1
change N Y N/A 0 1 0 1 1
change_request N Y N/A 0 1 0 1 1
chosen_action N N N/A 0 0 0 0 3
circle N Y N/A 0 1 0 3 2
closed_shell N Y N/A 0 1 0 1 0
configuration_design N N N/A 0 0 0 0 3
configuration_effectivity N Y N/A 0 1 0 2 4
configuration_item N N N/A 0 0 0 0 2
conic Y Y N 4 1 1 2 2
conical_surface N Y N/A 0 1 0 4 0
contract N N N/A 0 0 0 0 1
contract_assignment Y N Y 1 0 3 0 1
contract_type N N N/A 0 0 0 0 1
conversion_based_unit N Y N/A 0 1 0 1 1
coordinated_universal_time_offset N N N/A 0 0 0 0 1
curve Y Y N 5 1 1 2 0
curve_bounded_surface N Y N/A 0 1 0 0 3
date Y N Y 3 0 1 0 1
date_and_time N N N 0 0 0 0 2
date_and_time_assignment Y N Y 1 0 0 0 3
date_time_role N N N/A 0 0 0 0 1
dated_effectivity N Y N/A 0 1 0 1 3
degenerate_pcurve N Y N/A 0 1 0 3 2
directed_action N N N/A 0 0 0 0 1
document N N N/A 0 0 0 0 1
document_reference N N N/A 0 0 0 0 2
document_relationship N N N/A 0 0 0 0 2
document_type N N N/A 0 0 0 0 1
document_usage_constraint N N N/A 0 0 0 0 3
document_with_class N Y N/A 0 1 0 1 1
edge Y Y N 2 1 1 2 2
effectivity Y N Y 3 0 1 0 1
elementary_surface Y Y N 5 1 1 3 1
ellipse N N N/A 0 0 0 0 1

www.manaraa.com

78

 super sub Num Num Max MAX Max
 Entity type? type? root? Sub Super DIT Super_Path DAC Path
evaluated_degenerate_pcurve N Y N/A 0 1 0 4 3
executed_action N Y N/A 0 1 0 1 0
face Y Y N 2 1 1 2 2
face_bound N Y N/A 0 1 0 2 1
face_outer_bound N Y N/A 0 1 0 3 0
face_surface N Y N/A 0 1 0 3 3
founded_item N N N/A 0 0 0 0 0
geometric_representation_context N Y N/A 0 1 0 1 1
geometric_representation_item Y Y N 15 1 3 1 1
geometric_set Y Y N 1 1 1 1 1
hyperbola N Y N/A 0 1 0 3 2
length_measure_with_unit N Y N/A 0 1 0 1 3
line N Y N/A 0 1 0 3 3
loop Y Y N 3 1 1 2 0
lot_effectivity N Y N/A 0 1 0 1 2
mass_measure_with_unit N Y N/A 0 1 0 1 0
measure_with_unit N N N/A 0 0 0 0 1
next_assembly_usage_occurrence N Y N/A 0 1 0 3 0
organization N N N/A 0 0 0 0 1
parabola N Y N/A 0 1 0 3 1
parametric_representation_context N Y N/A 0 1 0 1 0
path Y Y N 2 1 1 2 1
pcurve N Y N/A 0 1 0 3 1
person N N N 0 0 0 0 1
person_and_organization N N N 0 0 0 0 2
person_and_organization_assignment N N N/A 0 0 0 0 3
person_and_organization_role N N N/A 0 0 0 0 1
personal_address N Y N/A 0 1 0 1 2
placement Y Y N 2 1 1 1 3
plane N Y N/A 0 1 0 4 0
plane_angle_measure_with_unit N Y N/A 0 1 0 1 0
point Y Y N 1 5 1 2 0
point_on_curve N Y N/A 0 1 0 3 3
product N N N/A 0 0 0 0 2
product_category N N N/A 0 0 0 0 0
product_category_relationship N N N/A 0 0 0 0 1
product_concept N N N/A 0 0 0 0 0
product_concept_context N N N/A 0 0 0 0 1
product_context N Y N/A 0 1 0 1 0
product_definition N N N/A 0 0 0 0 1
product_definition_context N Y N/A 0 1 0 1 1
product_definition_effectivity N Y N/A 0 1 0 1 1
product_definition_formation N N N/A 0 0 0 0 0
product_definition_relationship N N N/A 0 0 0 0 1
product_definition_shape N Y N/A 0 1 0 1 0

www.manaraa.com

79

 super sub Num Num Max MAX Max
 Entity type? type? root? Sub Super DIT Super_Path DAC Path
product_definition_usage Y Y N/A 1 1 2 1 0
product_related_product_category N N N/A 0 0 0 0 2
product_definition N N N/A 0 0 0 0 1
product_definition_representation N N N/A 0 0 0 0 2
representation N N N/A 0 0 0 0 2
representation_context N N N/A 0 0 0 0 2
representation_item N N N/A 0 0 0 0 1
security_classification_level N N N/A 0 0 0 0 1
serial_numbered_effectivity N Y N/A 0 1 0 1 1
shape_aspect N N N/A 0 0 0 0 1
shape_definition_representation N Y N/A 0 1 0 1 0
shape_representation N Y N/A 0 1 0 1 0
shape_representation_relationship N Y N/A 0 1 0 2 0
si_unit N Y N/A 0 1 0 1 0
solid_angle_measure_with_unit N Y N/A 0 1 0 1 0
solid_model Y Y N 1 1 1 1 0
specified_higher_usage_occurrence N Y N/A 0 1 0 3 2
spherical_surface N Y N/A 0 1 0 4 2
start_request N Y N/A 0 1 0 1 0
start_work N Y N/A 0 1 0 1 0
supplied_part_relationship N N N/A 0 0 0 0 0
surface Y Y N 5 1 2 2 0
surface_replica N Y N/A 0 1 0 3 2
topological_representation_item Y Y N 10 1 3 1 0
toroidal_surface N Y N/A 0 1 0 4 2
uniform_curve N Y N/A 0 1 0 1 0
uniform_surface N Y N/A 0 1 0 4 0
valid_reference_source N N N/A 0 0 0 0 1
vector N Y N/A 0 1 0 2 0
versioned_action_request N N N/A 0 0 0 0 1
vertex N Y N/A 0 1 0 2 0
vertext_loop N Y N/A 0 1 0 3 2
vertext_point N Y N/A 0 1 0 2 0

www.manaraa.com

80

APPENDIX C

ANALYSIS OF SCHEMA AP 203 (ATTRIBUTE TYPES)

This Appendix provides the result of the analysis of the Attributes of the Entities of the

schema in Appendix A. The table shows an entity and its attributes in the first column, and the

underlying type in the second column. The third column assigns a code that describes the

underlying type of the attribute. DAC_PATH again shows, for each attribute, the longest path

from that attribute to its underlying type.

 Entity /Attributes Underlying Type Name

Underlying
type (E =
Enum, R =
Restricted
types, S =
Select
Types, B =
Base type, T
= Entity) DAC_Path

action
name STRINGB 0

description STRINGB 0
chosen_method action_methodT 1

action_assigment

assigned_action actionE 0
action_directive

name STRINGB 0
request versioned_action_requestT 1

action_method
name STRINGB 0

descritpion STRINGB 0
consequence STRINGB 0

purpose STRINGB 0
action_request_assignment

assigned_action_request versioned_action_requestT 1
action_request_solution

method action_methodT 1
request versioned_action_requestT 1

action_request_status
status labelR 1

assigned_request versioned_action_requestT 1
action_status

status labelR 1
assigned_action executed_actionT 1

www.manaraa.com

81

 Entity /Attributes Underlying Type Name

Underlying
type (E =
Enum, R =
Restricted
types, S =
Select
Types, B =
Base type, T
= Entity) DAC_Path

address
internal_location labelR 1

street_number labelR 1
street labelR 1

postal_box labelR 1
town label 1

region labelR 1
postal_code labelR 1

country labelR 1
facsmile_number labelR 1

telephone_number labelR 1
electronic_mail_address labelR 1

telex_number labelR 1
advanced_face
alternate_product_relationship

name labelR 1
definition textR 1
alternate productT 2

base productT 2
basis textR 1

application_context
application textT 3

application_context_element
name labelR 1

frame_of_reference application_contextT 2
application_protocol_definition

status labelR 1
application_interpreted_model_schema_name labelR 1

application_protocol_year year_numberR 1
application aplication_contextT 3

approval
status approval_status T 2

level STRINGB 0
approval_assignment

assigned_approval approval_status T 3
approval_date_time

date_time date_time_select S 1
dated_aproval approval T 3

approval_level
level STRINGB 0

www.manaraa.com

82

 Entity /Attributes Underlying Type Name

Underlying
type (E =
Enum, R =
Restricted
types, S =
Select
Types, B =
Base type, T
= Entity) DAC_Path

approval_person_organization
person_organization person_organization_selectT 1
authorized_approval approvalT 3

role approval_roleT 2
approval_relationship

name STRINGB 0
description STRINGB 0

relating_approval approvalT 3
related_approval approvalT 3

approval_role
role labelR 1

approval_status
name labelR 1

area_measure_with_unit N/A
area_unit N/A
assembly_component_usage
reference_designator identifier R 1
assembly_component_usage_substitute

name labelR 1
definition textR 1

base assembly_component_usageT 2
substitute assembly_component_usageT 2

b_spline_curve_with_knots
knot_multiplicities INTEGERB 0

knots pamater_valueR 1
knot_spec knot_typeT 1

bounded_curve
bounded_pcurve N/A
bounded_surface N/A
calendar_date N/A

day_component day_in_month_numberR 1
month_component month_in_year_numberR 1

cartesian_point
coordinates length_measureR 1

cc_design_approval
items approved_itemS 1

cc_design_certification
items certified_itemS 1

www.manaraa.com

83

 Entity /Attributes Underlying Type Name

Underlying
type (E =
Enum, R =
Restricted
types, S =
Select
Types, B =
Base type, T
= Entity) DAC_Path

cc_design_contract
itemscontract_item S 1

cc_design_date_and_time_assignment
items date_time_itemT 1

Certification
name labelR 1

purpose textR 1
kind certification_typeT 2

certification_assignment
assigned_certification certification T 3

certification_type
description labelR 1
change

items work_itemT 1
change_request

items change_request_itemT 1
chosen_action

action directed_actionT 3
circle

readius positive_length_measureR 2
closed_shell N/A
configuration_design

configuration configuration_itemT 3
design product_defintition_formationT 1

configuration_effectivity
configuration configuration_designT 4

configuration_item
id identifierR 1

name labelR 1
description textR 1

item_concept product_concept T 2
purpose labelR 1

conic
position axis2_placement T 2

conical_surface
radius length_measureB 0

semi_angle plane_angle_measureB 0

www.manaraa.com

84

 Entity /Attributes Underlying Type Name

Underlying
type (E =
Enum, R =
Restricted
types, S =
Select
Types, B =
Base type, T
= Entity) DAC_Path

contract
name STRINGB 0

purpose STRINGB 0
kind contract_typeT 1

contract_assignment
assigned_contract contractT 1

contract_type
description STRINGB 0

conversion_based_unit
name labelR 1

conversion_factor measure_with_unitT 1
coordinated_universal_time_offset

hour_offset hour_in_day R 1
minute_offset minute_in_day R 1

sense ahead_or_behindE 1
curve N/A
curve_bounded_surface

basis_surface surfaceT 3
boundaries boundary_curveT 1

implicit_outer BOOLEANB 0
date

year_component year_numberR 1
date_and_time

date_component dateT 2
time_component local_timeT 1

date_and_time_assignment
assigned_date_abd_time date_and_timeT 3

role date_time_roleT 3
date_time_role 1

name labelR 1
dated_effectivity

effective_start_date date_and_timeT 3
effective_end_date date_and_timeT 3

degenerate_pcurve
basis surfaceT 2

reference_to_curve defintional_representationT 1
directed_action

www.manaraa.com

85

 Entity /Attributes Underlying Type Name

Underlying
type (E =
Enum, R =
Restricted
types, S =
Select
Types, B =
Base type, T
= Entity) DAC_Path

directive action_directiveT 1
document

id identifierR 1
name labelR 1

description textR 1
kind document_typeT 1

document_reference
assigned_document document T 2

source labelR 1
document_relationship

name labelR 1
description textR 1

relating_document document T 2
related_document document T 2

document_type
product_data_type label 1

document_usage_constraint

source document T 2
subject_element labelR 1

subject_element_value textR 1
document_with_class
class identifierR 1
edge

edge_start vertextT 1
edge_end vertextT 1

effectivity
id identifierR 1

elementary_surface
position axis2_placement_3dT 1

ellipse
semi_axis_1 positive_plane_angle_measureT 1
semi_axis_2 positive_plane_angle_measureT 1

evaluated_degenerate_pcurve
equivalent_point cartesian_point T 1

executed_action N/A

www.manaraa.com

86

 Entity /Attributes Underlying Type Name

Underlying
type (E =
Enum, R =
Restricted
types, S =
Select
Types, B =
Base type, T
= Entity) DAC_Path

Face
bounds face_boundT 1

Face_bound
bound loopT 1

orientation BOOLEANB 0
Face_outer_bound N/A
Face_surface
Face_goemetry surface T 1
founded_item N/A
geometric_representation_context

coordinate_space_dimension dimension_count T 1
geometric_representation_item

dim dimension_count T 1
geometric_set

elements geometric_set_selectT 1
hyperbola

semi_axis positive_length_measureR 2
semi_imag_axis positive_length_measureR 2

length_measure_with_unit N/A
Line

pnt cartesian_point T 1
dir vectorT 1

Loop N/A
lot_effectivity

effectivity_lot_id identifierR 1
effectivity_lot_size measure_with_unitT 2

mass_measure_with_unit N/A
measure_with_unit

value_component measure_valueR 1
unit_component unitT 1

Next_assembly_usage_occurrence N/A
organization

id identifierR 1
name labelR 1

description textR 1
parabola

focal_dist length_measureR 1

www.manaraa.com

87

 Entity /Attributes Underlying Type Name

Underlying
type (E =
Enum, R =
Restricted
types, S =
Select
Types, B =
Base type, T
= Entity) DAC_Path

parametric_representation_context
path N/A

edge_list orientation_edgeT 1
pcurve

basis_surface surfaceT 1
reference_to_curve definitional_representationT 1

person
id identifierR 1

last_name labelR 1
first_name labelR 1

middle_name labelR 1
prefix_titles labelR 1
suffix_titles labelR 1

person_and_organization
the_person personT 2

the_organization organizationT 2
person_and_organization_assignment

assigned_person_and_organization person_and_organizationT 3
role person_organization_roleT 2

person_and_organization_role
name labelR 1

personal_address
people personT 2

description textR 1
placement

location cartesian_pointT 1
plane N/A
plane_angle_measure_with_unit N/A
point N/A
point_on_curve

basis_curve curveT 1
point_parameter parameter_valueR 1

product
id STRINGB 0

name STRINGB 0
description STRINGB 0

frame_of_reference product_contextT 2

www.manaraa.com

88

 Entity /Attributes Underlying Type Name

Underlying
type (E =
Enum, R =
Restricted
types, S =
Select
Types, B =
Base type, T
= Entity) DAC_Path

product_category
name STRINGB 0

description STRINGB 0
product_category_relationship

name labelR 1
description textR 1

category product_category T 1
sub_category product_category T 1

product_concept
id identifierB 0

name labelB 0
description textB 0

market_context product_concept_contextT 1
product_concept_context

market_segment_type STRINGB 0
product_context

descipline_type labelR 1
product_definition

id identifierR 1
description textR 1

formation product_definition_formationT 1
frame_of_reference product_definition_contextT 1

product_definition_context
life_cycle_stage labelR 1

product_definition_effectivity
usage product_definition_usageT 1

product_definition_formation
idSTRING B 0

descriptionSTRING B 0
product_definition_relationship

id identifierR 1
name labelR 1

description textR 1
relating_product_definition product_definitionT Q

www.manaraa.com

89

 Entity /Attributes Underlying Type Name

Underlying
type (E =
Enum, R =
Restricted
types, S =
Select
Types, B =
Base type, T
= Entity) DAC_Path

related_product_definition product_definitionT 2
product_definition_shape N/A
product_definition_usage N/A
product_related_product_category

the_product productT 2
product_definition

name labelR 1
description textR 1

definition characterized_definitionT 1
product_definition_representation

definition property_definitionT 1
used_representation representationT 2

representation
name labelR 1
items representation_itemT 1

context_of_items representation_contextT 2
representation_context

context_identifier identifierR 1
context_type textR 1

representation_in_context representationT 2
representation_item

name labelR 1
security_classification_level

name labelR 1
serial_numbered_effectivity

effectivity_start_date identifierR 1
effectivity_end_date identifierR 1

shape_aspect
name labelR 1

description textR 1
of_shape product_definition_shapeT 1

product_definitional LOGICALB 0
shape_definition_representation N/A
shape_representation N/A
shape_representation_relationship N/A
si_unit

prefix si_prefixE 0

www.manaraa.com

90

 Entity /Attributes Underlying Type Name

Underlying
type (E =
Enum, R =
Restricted
types, S =
Select
Types, B =
Base type, T
= Entity) DAC_Path

name si_unit_nameE 0
solid_angle_measure_with_unit
solid_model
specified_higher_usage_occurrence

upper_usage assembly_component_usageT 2
next_usage next_assembly_usage_occurrenceT 1

spherical_surface
raduis positive_length_measureR 2

start_request
items start_request_itemT 1

start_work
items work_itemT 1

supplied_part_relationship
surface N/A
surface_replica N/A

parent_surface surfaceT 2
transformation cartesian_transformation_operator_3dT 1

topological_representation_item
toroidal_surface

major_radius positive_length_measureR 2
minor_radius positive_length_measureR 2

uniform_curve N/A
uniform_surface N/A
valid_reference_source

source approved_source_of_referenceS 1
vector

orientation directionE 0
magnitude length_measureR 1

versioned_action_request
id STRINGB 0

version STRINGB 0
vertex

vertext_loop vertex 1
vertext_point

vertex_geometry pointT 2

www.manaraa.com

91

APPENDIX D

 ANALYSIS OF SCHEMA AP 203 (SELECT TYPES)

This Appendix provides the result of the analysis of the Select types of schema in

Appendix A. The first column shows, for each Select type, the number of Select list items, the

second column shows the type composition of the Select list. For instance, if the Select type

contains entities in the Select list, then the code T is assigned. The last column shows how many

times that type has been redefined.

Number of Select list items

Composition (E = Enum, R =
Restricted types, S = Select
Types, T = Entities, M = Mixed)

Maximum Level of
definition

3 T 1

11 T 1

2 S 2

2 E 1

1 T 2

1 T 1

2 T 1

1 T 2

1 T 1

3 T 2

9 T 1

3 T 1

2 T 1

2 T 1

1 S 2

3 T 3

1 S 2

12 R 1

2 T 2

3 T 1

1 T 1

3 T 1

2 T 1

1 T 1

3 T 1

1 T 1

2 T 1

1 T 1

2 T 1

1 T 1

2 T 1

www.manaraa.com

92

APPENDIX E

ANALYSIS OF SCHEMA AP 203 (RESTRICTED TYPES)

This Appendix provides the result of the analysis of the Restricted types of the schema in

Appendix A. The columns show the type name, the underlying type and the longest path to the

underlying type (Max DAC)

Underlying type (E =
Enum, R = Restricted
types, S = Select
Types, B = Base type,
T = Entity) Max DAC

 Type Name 0

area_measure B 0

context_dependent_measure B 0

context_dependent_measure B 0

count_measure B 0

day_in_month_number B 0

day_in_week_number B 0

day_in_year_number B 0

descriptive_measure B 0

dimension_count B 0

hour_in_day B 0

identifier B 0

label B 0

length_measure B 0

list_of_reversible_topology_item T 1

mass_measure B 0

minute_in_hour B 0

month_in_year_number B 0

parameter_value B 0

plane_angle_measure B 0

positive_length_measure R 1

positive_plane_angle_measure R 1

second_in_minute B 0

set_of_reversible_topology_item T 0

solid_angle_measure B 1

text B 0

volume_measure B 0

week_in_year_number B 0

year_number B 0

www.manaraa.com

93

APPENDIX F

SURVEY

This Appendix presents the survey instrument that was used to obtain information about

the reuse of EXPRESS modules. The survey was given to undergraduate students with one

semester training in EXPRESS. The survey required participants to reuse existing EXPRESS

modules in the schema provided in Appendix A to rebuild new schemas. In the survey,

participants are asked to locate and copy types, including all the other type mentioned in its

definition, into a new schema. The times (in minutes) taken for finding a type and copying it

(including its dependents) were recorded for different levels of coupling. The analysis of the

survey is given in Appendix G.

Survey Instructions

A: How to answer the questions
1. Type all your answers in one text file using a text editor like Notepad, Wordpad, Word, etc, and save the file

under the name YourName_SurveyResults.txt.
2. The text file containing your answers should have your name, your class and section at the top of the first page.
3. The number of the question being answered must precede each answer.
4. The completed survey must be turned in no later than December 12

B: Searching for items in a schemas
Print out the schemas provided Appendix A, B, C, D, and E. All searching must be done manually using a printed
version of the schemas provided in Appendix A, B, C, D, and E. Results that show signs of electronic searching, will
receive no grade for the survey.

C: Recoding the time taken for each question
1. Time taken in answering each question must be recorded in an EXCEL worksheet.
2. The EXCEL worksheet must have your name and class at the top of the first page.
3. Each recorded time must have the question number next to it.
4. Name the EXCEL worksheet as YourName_SurveyTime.xls
5. Your EXCEL worksheet should be formatted as shown below:

D: Submission of results
The file containing your answers and the one containing the times must both be sent to me by email zkot2@etsu.edu

E: Grades Assignment

www.manaraa.com

94

In order to receive a full 50-point grade, you must answer all questions.
Your results must show evidence of independent work, and also show that some level of seriousness and thought
have been applied to each question.

Name
Class-section#

Question# Starting Time Ending Time

F: How long is the survey?
The bulky part of the survey consists of instructions and sample questions to guide you. Each question is carefully
designed to solicit specific information about EXPRESS modules. Most of the questions should not take you more
that 5minutes. If you have a question understating what is required let me know. You are not required to read and
understand the EXPRESS schemas provided in the appendices in order to answer the questions.

www.manaraa.com

95

SCHEMA sample1;

TYPE label = STRING;
END_TYPE;

TYPE action_status = ENUMERATION OF
 (EXECUTED, PENDING, UNKNOWN);
END_TYPE;

TYPE age_value = INTEGER;
END_TYPE;

TYPE real_number = REAL;
END_TYPE;

TYPE integer_number = INTEGER;
END_TYPE;

TYPE char_value = STRING(1);
END_TYPE;

TYPE text = STRING;
END_TYPE;

TYPE number_select =
 SELECT (real_number, integer_number);
END_TYPE;

TYPE string_select = SELECT
(char_value, text);
END_TYPE;

TYPE parameter_value = SELECT
 (number_select, string_select);
END_TYPE;

 ENTITY person;
 name: STRING;
 age: age_value;
END_ENTITY;

ENTITY measurement;
 name : STRING;
 measure_value : number_select;
END_ENTITY;

ENTITY address;
 city: STRING;
 state: STRING;
 zip: INTEGER;
END_ENTITY;

ENTITY action;
 name: STRING;
 initiator: person;
END_ENTITY;

END_SCHEMA;

Section 1: Importing Entities and Types

Importing. The word import here is used simply
to mean “copy and paste”. Importing a type into
a new schema means copying that type including
all other types referenced in its definition. See
sample questions on next page examples below.

Sample Questions for Section 1:
Assume the schema (schema sample1) given in
Figure 1 is provided. Answer the following
questions

Figure 1. Sample schema

www.manaraa.com

96

SCHMEA sample1A;

TYPE label = STRING;
END_TYPE;

END_SCHEMA;

SCHMEA sample1B;

TYPE action_status = ENUMERATION OF
(EXECUTED, PENDING, UNKNOWN);
END_TYPE;

END_SCHEMA;

SCHMEA sample1C;

ENTITY address;
 city: STRING;
 state: STRING;
 zip: INTEGER;
END_ENTITY;

END_SCHEMA;

SCHEMA sample1D;

TYPE number_select =
 SELECT (real_number, integer_number);
END_TYPE;

TYPE real_number = REAL;
END_TYPE;

TYPE integer_number = INTEGER;
END_TYPE;

END_SCHEMA;

1a) Import type label from schema sample1 into a new schema called sample1A.

Explanation: In this example question, type label is the item to
be imported. The type label is based on an EXPRESS base type
STRING. Hence we simply copy that type into our schema. See
Figure 1a.

 Figure 1a: Answer to sample question a)

1b) Import type action_status from schema sample1into a
new schema called sample1B.

Explanation: In this example question, the item to import is
action_status. Type action_status is an EXPRESS
ENUMERATION. Enumeration types do not reference
other types in their definitions. Hence we simply copy that
type action_status; nothing else. See Figure 1b. Figure 1b: Answer to sample question b)

1c) Import entity address from schema sample1into a new
schema called sample1C.

Explanation: In this example question, entity address is the
item to be imported. Entity address does not reference any
user-defined type and hence we simply copy that entity;
nothing else is imported with it. See Figure 1c.

 Figure 1c: Answer to sample question c)

1d) Import type number_select from schema sample1into a new schema called sample1D.

Explanation: In this example question, type
number_select is the item to be imported. This is a
SELECT type that references two other types
(real_number and integer_number) in its definition.
Therefore, we need to import both real_number and
integer_number.

Type real_number is based on EXPRESS base type
REAL, so we simply copy real_number; nothing else is
imported with it.

Type integer_number is also based on an EXPRESS
base type INTEGER, and again we simply import type
integer_number. See Figure 1d.

 Figure 1d: Answer to sample question d)

www.manaraa.com

97

SCHEMA sample1E;

ENTITY action;
 name: STRING;
 initiator: person;
END_ENTITY;

ENTITY person;
 name: STRING;
 age: age_number;
END_ENTITY;

TYPE age_value = INTEGER;
END_TYPE;

END_SCHEMA;

SCHEMA sample1F;

ENTITY measurement;
 name : STRING;
 measure_value : number_select;
END_ENTITY;

TYPE number_select =
 SELECT (real_number, integer_number);
END_TYPE;

TYPE real_number = REAL;
END_TYPE;

TYPE integer_number = INTEGER;
END_TYPE;

END_SCHEMA;

1e) Import entity action from schema sample1 into a new schema called sample1E.

Explanation:
In this example question, entity action is the item to be
imported. This entity has two attributes: name and initiator.
Attribute name is of type STRING, which is a base type.
However, the attribute initiator references entity person.
Entity person therefore needs to be imported.

In entity person, we also notice that type age_value is
referenced via the attribute age; hence type age_value needs
to be imported.

Type age_value is based on an EXPRESS base type
INTEGER. We simply import the type age_value. See Figure
1e.

 Figure 1e: Answer to sample question e)

1f) Import entity measurement from schema sample1 into a new schema called sample1F.

Explanation: In this example question, the item to be
imported is entity measurement.

Entity measurement references type number_select
via attribute measure_value. Hence type
number_select needs to be imported.

We also notice that number_select is an EXPRESS
SELECT type that also references two other types in
their definitions.

Importing number_select requires types real_number
and integer_number. See Figure 1f.

 Figure 1f: Answer to sample question f)

www.manaraa.com

98

Section 1 Questions
The following questions are based on the edited version of AP203 provided in Appendix A. Please make sure you
time yourself.

1) Import type day_in_month_number into a new schema called Schema1A.

How long did it take to complete this task?
Start time:
End time:
List any other factors that made this task more difficult or easier.

2) Import entity product_category into a new schema called Schema1B

How long did it take to complete this task?
Start time:
End time:
List any other factors that made this task more difficult or easier.

3) Import type hour_in_day into a new schema called Schema1C

How long did it take to complete this task?
Start time:
End time:
List any other factors that made this task more difficult or easier.

4) Import entity contract_type into a new schema called Schema1D

How long did it take to complete this task?
Start time:
End time:
List any other factors that made this task more difficult or easier.

5) Import type ahead_or_behind into a new schema called Schema1E.

How long did it take to comp lete this task?
Start time:
End time:
List any other factors that made this task more difficult or easier.

6) Import entity action into new schema called Schema1F.

How long did it take to complete this task?
Start time:
End time:
List any other factors that made this task more difficult or easier.

7) Import type change_request_item into a new schema called Schema1G.

How long did it take to complete this task?
Start time:
End time:
List any other factors that made this task more difficult or easier.

8) Import entity contract into new schema called Schema1G

How long did it take to complete this task?
Start time:
End time:
List any other factors that made this task more difficult or easier.

9) Import entity approval_relationship into new schema called Schema1H.

www.manaraa.com

99

How long did it take to complete this task?
Start time:
End time:

10) Import type generic_definition into a new schema called Schema1I.

How long did it take to complete this task?
Start time:
End time:
List any other factors that made this task more difficult or easier.

11) Import entity ellipse into a new schema called Schema1J

How long did it take to complete this task?
Start time:
End time:
List any other factors that made this task more difficult or easier.

12) Import entity product_related_product_category into a new schema1K

How long did it take to complete this task?
Start time:
End time:
List any other factors that made this task more difficult or easier.

13) Import entity chosen_action into a new schema1L

How long did it take to complete this task?
Start time:
End time:
List any other factors that made this task more difficult or easier.

www.manaraa.com

100

Section 2: Determining Underlying Types

In EXPRESS, an attribute can have its underlying type as one of the base types, an entity type, a select type, or an
enumeration type. Every attribute in a schema must have a type that determines the set of possible values that can be
assigned to that attribute. There are several occasions when one needs to know the underlying type for an attribute.

Assume the following entity is given.

ENTITY test;

attributeX: typeY;
END_ENTITY;

To determine the underlying type of attributeX, follow these steps:

First look for the definition of typeY to determine what it is.

1. If typeY is an ENUMERATION type

The underlying type of attributeX is an ENUMERATION.

2. If typeY is of type SELECT
The underlying type for attributeX is a SELECT.

3. If typeY is of type ENTITY

The underlying type for attributeX is an ENTITY.

5. If typeY is of type defined type use the following method to get the underlying type
Determine the underlying type for the defined type

a) If the underlying type for the defined type is an EXPRESS base type STRING, INTEGER, NUMBER,
BOOLEAN, LOGICAL
The underlying type for typeY is that base type

b) If the underlying type for the defined type is a select type then
The underlying type for typeY is SELECT

c) If the underlying type of the defined type is an enumeration type then
The underlying type for typeY is ENUMERATION

d) If the underlying type for the defined type is another defined type then
Repeat steps a) to d).

www.manaraa.com

101

Sample questions for Section 2:
The following examples questions are based on the schema in Figure 1.

2a) Determine the underlying type for attribute status in entity person? What are the possible values that can be
assigned to attribute status?

 Answer:
Underlying type: ENUMERATION

2b) Entity measure has an attribute called measure_value. What is the type name for attribute measure_value?
Determine the underlying type for the attribute measure_value.

Answer:
Type name for attribute meaure_value is number_select.
Underlying type: SELECT

2c) Determine the underlying type for attribute initiator in entity action?

Answer:
Underlying type for attribute initiator is ENTITY.

2d) Determine the underlying type attribute for age_number in entity person?

Answer: INTEGER
The attribute age_number is a defined type, which is based on an EXPRESS base type INTEGER.

www.manaraa.com

102

Section 2 Questions
The following questions are based on the edited version of AP203 provided in Appendix A. Perform each task and
record the time taken. Please make sure to time yourself.

14) Entity face_bound has an attribute called bound. What is the type of the attribute bound? What is the underlying

type?
How long did it take to complete this task?
Start time:
End time:
List any other factors that made this task more difficult or easier.

15) Entity si_unit has an attribute called prefix. What is the type name and underlying type for the attribute prefix?

How long did it take to complete this task?
Start time:
End time:
List any other factors that made this task more difficult or easier.

16) In entity coordinated_universal_time_offset, there is an attribute called sense, what is the underlying type for the

attribute sense?
How long did it take to complete this task?
Start time:
End time:
List any other factors that made this task more difficult or easier.

17) Entity measure_with_unit has an attribute called value_component. What is the type name and underlying type

of attribute value_component?
How long did it take to complete this task:
Start time:
End time:
List any other factors that made this task more difficult or easier.

18) Entity geometric_representation_context has an attribute coordinate_space, what is the type name and the

underlying type of the attribute coordinate_space?
How long did it take to complete this task?
Start time:
End time:
List any other factors that made this task more difficult or easier.

19) Entity b_spline_curve_with_knots has an attribute knot_spec, what is the type name and the underlying type of

the attribute knot_spec?
How long did it take to complete this task?
Start time:
End time:
List any other factors that made this task more difficult or easier.

20) Entity circle has an attribute called raduis. What is the type name and the underlying type for the attribute

raduis?
How long did it take to complete this task?
Start time:
End time:
List any other factors that made this task more difficult or easier.

www.manaraa.com

103

Section 3: Complex Domains
The domain of a type is the set of values that the type is limited to. The following questions ask for the domain of
certain types. To determine the domain of a type follow the following algorithm.

Assume the following entity is given.

ENTITY test;

attributeX: typeY;
END_ENTITY;

1. If typeY is an EXPRESS ENUMERATION

The domain of typeY is the set of values mentioned in the enumeration list.
(See Sample question 3a)

2. If typeY is a defined type
The domain of typeY is the domain of the type that the defined type is based on
(See Sample question 3b)

4. If typeY is of type ENTITY (for the purpose of this survey)

The domain of typeY is one of the following:
e) All subtypes of entity typeY
f) The entity typeY itself (except where typeY is an abstract supertype)

(See Sample question 3c)

6. If typeY is an EXPRESS SELECT (note a Select type has a list of types in its select list)
For each type mentioned in the select list, determine the domain using steps 1,2,3,4.
The domain of typeY is the sum of the domains of all types in the select list.

 (See Sample question 3d)

www.manaraa.com

104

Sample Question for Section 3

The following sample questions are based on the schema in Figure 1.

3a) (Domain of an ENUMERATION type) What is the domain of type action_status?

Answer:
 Domain of type action_status ={EXECUTED, PENDING, UNKNOWN }

3b) (Domain for a Defined type) What is the domain for type label?
Answer:
Domain of type label is domain of base type STRING.

3c) (Domain of an entity type) Attribute initiator in entity action has a type person where person is an entity type.

What are the possible types that can be assigned to the attribute initiator? In other words what is the domain
for type person?

Answer:
Attribute initiator is of type person, which can be one of the following:
 { student | professor| studentprofessor } which is same as the domain of type person.

3d) (Domain of a SELECT type) What is the domain of type parameter_value?

Answer:
Domain of type parameter_value ={ number_select, string_select }

Domain of type number_select={real_number, intege_number }

Domain of type string_select = {char_value, text}

Complete domain of type parameter_value ={ real_number, integer_number, char_value , text } which same as
{REAL, INTEGER, STRING(1), STRING}

www.manaraa.com

105

Section 3 Questions
The following questions are based on the edited version of AP203 provided in Appendix A. Perform each task and
record the time taken. Please make sure you time yourself.

21) Entity b_spline_curve_with_knots has an attribute called knot_spec. What is the type name fro the attribute

knot_spec?
How long did it take to complete this task?
Start time:
End time:
List any other factors that made this task more difficult or easier.

22) Entity assembly_component_usage_substitute has an attribute called base. List the possible types that can be

assigned to the attribute base. (in other words, what are the possible types that the attribute base can assume) ?
How long did it take to complete this task?
Start time:
End time:
List any other factors that made this task more difficult or easier.

23) List all the types that make up the complete domain for type formal_approval?

How long did it take to complete this task?
Start time:
End time:
List any other factors that made this task more difficult or easier.

24) Entity valid_reference_source has an entity called source. List the possible types that can be assigned to the

attribute source can assume (i.e. in other words, what is the domain of type approved_source_of_reference)?
How long did it take to complete this task?
Start time:
End time:
List any other factors that made this task more difficult or easier.

www.manaraa.com

106

SCHEMA sample3;

ENTITY person
ABSTRACT SUPERTYPE OF(ONEOF
(male, female)
ANDOR
(student, professor));

 name: STRING;
 age: age_number;
END_ENTITY;

ENTITY male
 SUBTYPE(person);
END_ENTITY;

ENTITY female
 SUBTYPE(person);
END_ENTITY;

ENTITY student
 SUBTYPE(person);
END_ENTITY;

ENTITY grad_student
 SUBTYPE(student);
END_ENTITY;

ENTITY undergrad_student
 SUBTYPE(student);

Section 4: Inheritance Hierarchies

Root of an inheritance tree. The root of an inheritance tree (hierarchy) is the uppermost entity without any supertype.
The following questions ask you to determine the supertypes and subtypes as well as the roots in certain inheritance
hierarchies. The example below is provided to guide you.

Sample Questions for Section 4

a) Entity undergrad_student is in a simple

inheritance hierarchy. What is the root of this
inheritance hierarchy?

 Answer: person

b) What is the direct supertype of entity

undergrad_student?

 Answer: student

Figure 3: Sample schema for Section 4 questions

www.manaraa.com

107

Section 4 Questions
The following questions are based on the edited version of AP203 provided in Appendix A. Perform each task and
record the time taken. Please make sure you time yourself.

24) Entity calendar_date is part of a simple inheritance hierarchy. What is the root of this inheritance hierarchy?

How long did it take to complete this task?
Start time:
End time:
List any other factors that made this task more difficult or easier.

25) Entity face_bound is also part of an inheritance hierarchy. What is the root of this inheritance hierarchy?

How long did it take to comp lete this task?
Start time:
End time:
List any other factors that made this task more difficult or easier.

26) Find the root of the inheritance hierarchy that entity conic is part of.

How long did it take to complete this task?
Start time:
End time:

List any other factors that made this task more difficult or easier.

www.manaraa.com

108

APPENDIX G

SURVEY RESULTS—TIME FOR REUSING EXPRESS MODULES

This Appendix presents the results obtained from the survey. Each column in the table shows the

type and level of coupling of the type being searched for in each question. The rows give the

reported times. For instance, for DAC_ENT level 0, two questions were asked (Question 2 and,

Question 4). The times (in minutes) recorded for these questions were added and averaged. A

summary of the analysis of this data is also given in Chapter 5. (See Appendix F for survey

questions). All times are in minutes recorded to one decimal place.

www.manaraa.com

109

DAC_ENT

Time (min) for Level 0 Time (min) Level 1 Time (min) Level 2 Time (min) Level 3
Survey

Question
2

Survey
Question

 4

Survey
Question

 6

Survey
Question

 14

Survey
Question

8

Survey
Question

 9

Survey
Question

12

Survey
Question

13

2.0 1.0 4.0 1.0 5.0 1.0 8.0 5.0
4.0 5.0 5.0 8.0 3.0 9.0 6.0 3.0
1.3 0.8 0.9 4.0 2.0 6.0 2.2 1.8
3.0 1.0 2.0 15.0 4.0 1.0 8.0 3.0
7.0 4.0 5.0 4.0 9.0 5.0 10.0 10.0
4.0 1.0 3.0 2.5 6.0 6.0 5.0 2.0
1.0 0.5 2.0 2.0 1.5 2.2 2.5 3.6
2.0 1.0 1.0 9.0 2.0 2.0 2.0 1.0
5.0 3.0 1.4 4.0 4.0 3.0 8.0 4.0
6.0 3.0 4.0 6.0 6.0 1.0 15.0 9.0
2.0 2.0 4.0 2.0 4.0 1.0 10.0 6.0
2.0 2.0 4.0 2.0 6.0 2.0 11.0 9.0
2.3 1.8 3.0 4.0 5.5 1.8 20.0 5.0
3.0 3.0 3.5 5.0 3.0 10.0 2.0 2.0
1.0 2.0 3.0 1.0 3.0 5.0 4.0 3.0
1.7 2.8 3.0 3.5 2.3 1.6 2.5 2.8
2.0 1.2 2.5 2.0 3.2 2.0 1.5 2.0
8.5 1.8 2.3 2.0 13.0 9.0 10.0 2.0
2.0 1.0 2.0 2.0 4.0 5.0 2.0 5.0
3.0 4.0 5.0 2.0 7.0 3.0 14.0 5.0
6.0 3.0 3.0 8.0 4.0 9.0 3.0 3.0
6.0 2.0 3.0 4.0 7.0 3.0 12.0 5.0
5.0 2.0 7.0 4.0 5.0 2.0 24.0 8.0
1.8 1.5 3.3 2.3 3.5 1.5 11.6 4.5
3.0 2.0 5.0 2.0 6.0 1.0 5.0 4.0
4.0 6.0 6.0 10.0 8.0 10.0 6.0 2.0
5.0 2.0 4.0 15.0 4.0 4.0 9.0 8.0
4.3 1.3 3.0 5.0 4.2 3.0 9.0 3.5
3.0 2.0 5.0 2.0 4.0 4.0 10.0 7.0
1.0 3.0 2.0 1.0 4.0 2.0 8.0 4.0
5.0 3.0 6.0 9.0 4.0 3.0 6.0 4.0

Sum 176.4 251.2 266.3 384.5
Mean 2.85 4.05 4.30 6.20

www.manaraa.com

110

Inheritance DAC_SEL
 Time (min)

for Level 1
Time (min)
for Level 2

Time (min)
for level 3

Time (min)
for Level 1

Time (min)
for Level 2

Time (min)
for Level 3

 Survey
Question

24

Survey
Question

25

Survey
Question

26

Survey
Question

7

Survey
Question

17

Survey
Question

10

Survey
Question

24

2.0 2.0 2.0 4.0 2.0 4.0 3.0
4.0 3.0 2.0 2.0 5.0 6.0 5.0
0.6 1.0 1.0 3.5 0.8 2.6 1.5
1.0 1.0 1.0 3.0 1.0 4.0 5.0
3.0 5.0 8.0 4.0 3.0 9.0 1.2
3.0 1.0 1.0 9.0 2.0 15.0 4.0
2.0 2.0 1.5 2.0 1.3 2.0 1.0
1.0 1.0 1.0 1.0 1.0 1.0 4.0
1.0 2.0 4.0 3.0 2.0 5.0 11.0
1.0 2.0 5.0 5.0 5.0 6.0 1.0
1.0 1.0 1.0 4.0 2.0 6.0 3.0
2.0 3.0 2.0 7.0 3.0 9.0 15.0
1.2 2.3 2.2 4.8 2.0 6.0 6.0
6.0 8.0 9.0 2.0 3.0 5.0 4.0
2.5 4.0 1.0 2.0 7.0 2.0 4.0
2.0 1.0 4.0 5.0 2.0 4.0 5.3
1.2 4.0 3.0 3.0 2.5 1.5 17.0
9.0 6.0 11.0 4.0 4.0 1.5 2.0
2.0 2.0 2.0 1.0 2.0 1.0 1.3
3.0 1.0 3.0 6.0 2.0 7.0 2.0
4.0 2.0 5.0 3.0 2.0 2.0 5.0
2.0 2.0 3.0 5.0 4.0 5.0 4.0
2.0 4.0 4.0 8.0 2.0 7.0 12.0
1.2 1.0 1.2 3.3 1.3 4.5 2.0
1.0 2.0 2.0 3.0 2.0 5.0 12.0
4.0 3.0 3.0 3.0 6.0 6.0 4.0
4.0 9.0 2.0 3.0 2.0 4.8 6.0
1.3 2.5 1.3 4.5 1.8 6.0 4.0
3.0 3.0 5.0 7.0 2.0 5.0 3.0
1.0 2.0 1.0 4.0 2.0 5.0 2.0
2.0 1.0 1.0 3.0 2.0 2.0 4.0

Sum 74.0 83.8 93.2 Sum 201.7 149.9 154.3
Mean 2.39 2.70 3.00 Mean 3.35 4.84 4.98

www.manaraa.com

111

DAC_DEF
 Time (min) for

Level 1
Time (min) for

Level 2
Time (min) for

Level 3
Survey

Question 1
Survey

Question 18
Survey

Question 20

3.0 2.0 1.0
5.0 5.0 6.0
1.3 1.0 1.3
2.0 1.0 2.0
4.0 4.0 6.0
1.0 3.0 2.0
1.3 1.0 1.5
2.0 3.0 2.0
3.0 2.0 3.0
7.0 5.0 4.0
2.0 2.0 5.0
4.0 2.0 6.0
2.5 3.5 2.0
2.0 3.0 5.0
3.0 6.0 3.0
2.0 3.0 1.0
2.5 4.0 4.0
1.0 2.0 1.8
1.8 2.0 1.0
3.0 8.0 6.0
6.0 1.0 1.0
2.0 1.0 1.8
3.0 2.0 4.0
2.0 3.0 2.0
2.0 2.0 3.0
2.0 3.0 4.0
3.0 1.0 5.0
4.0 2.0 5.0
2.0 3.0 3.0
3.0 2.0 2.0
2.0 3.0 1.0

Sum 84.4 85.5 95.4
Mean 2.72 2.76 3.08

www.manaraa.com

VITA

KWAKU OWUSU-TIEKU

Personal Data: Date of Birth: March 14, 1972
Place of Birth: Adomfe, Ashanti Akim, Ghana

Education: Port Moresby International High School, Port Moresby, PNG
East Tennessee State University, Johnson City, Tennessee,

Computer Science, BS, 1998
East Tennessee State University, Johnson City, Tennessee,

Information Science, MS, 2001
Professional
Experience:

 Graduate Assistant, East Tennessee State University,
Johnson City, Tennessee, 1998-2000

Software Designer/Programmer, Department of Computer &
Information Sciences, East Tennessee State University,
Johnson City, Tennessee, 2000-2001

Software Engineer, Sprint PCS, Nashville, Tennessee, 2001

